Global Solution Curves for Semilinear Elliptic Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Preface; Contents; 1. Curves of Solutions on General Domains; 1.1 Continuation of solutions; 1.2 Symmetric domains in R2; 1.3 Turning points and the Morse index; 1.4 Convex domains in R2; 1.5 Pohozaev's identity and non-existence of solutions for elliptic systems; 1.5.1 Non-existence of solutions in the presence of supercritical and lower order terms; 1.5.2 Non-existence of solutions for a class of systems; 1.5.3 Pohozhaev's identity for a version of p-Laplace equation; 1.6 Problems at resonance; 2. Curves of Solutions on Balls; 2.1 Preliminary results 2.2 Positivity of solution to the linearized problem2.3 Uniqueness of the solution curve; 2.4 Direction of a turn and exact multiplicity; 2.5 On a class of concave-convex equations; 2.6 Monotone separation of graphs; 2.7 The case of polynomial f(u) in two dimensions; 2.8 The case when f(0) <0; 2.9 Symmetry breaking; 2.10 Special equations; 2.11 Oscillations of the solution curve; 2.11.1 Asymptotics of some oscillatory integrals; 2.11.2 Reduction to the oscillatory integrals; 2.12 Uniqueness for non-autonomous problems; 2.12.1 Radial symmetry for the linearized equation 2.13 Exact multiplicity for non-autonomous problems2.14 Numerical computation of solutions; 2.14.1 Using power series approximation; 2.14.2 Application to singular solutions; 2.15 Radial solutions of Neumann problem; 2.15.1 A computer assisted study of ground state solutions; 2.16 Global solution curves for a class of elliptic systems; 2.16.1 Preliminary results; 2.16.2 Global solution curves for Hamiltonian systems; 2.16.3 A class of special systems; 2.17 The case of a "thin" annulus; 2.18 A class of p-Laplace problems; 3. Two Point Boundary Value Problems 3.1 Positive solutions of autonomous problems3.2 Direction of the turn; 3.3 Stability and instability of solutions; 3.3.1 S-shaped curves of combustion theory; 3.3.2 An extension of the stability condition; 3.4 S-shaped solution curves; 3.5 Computing the location and the direction of bifurcation; 3.5.1 Sign changing solutions; 3.6 A class of symmetric nonlinearities; 3.7 General nonlinearities; 3.8 Infinitely many curves with pitchfork bifurcation; 3.9 An oscillatory bifurcation from zero: A model example; 3.10 Exact multiplicity for Hamiltonian systems; 3.11 Clamped elastic beam equation 3.11.1 Preliminary results3.11.2 Exact multiplicity of solutions; 3.12 Steady states of convective equations; 3.13 Quasilinear boundary value problems; 3.13.1 Numerical computations for the prescribed mean curvature equation; 3.14 The time map for quasilinear equations; 3.15 Uniqueness for a p-Laplace case; Bibliography This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results |
Beschreibung: | 1 Online-Ressource (254 pages) |
ISBN: | 9789814374354 9814374350 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043081541 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789814374354 |c electronic bk. |9 978-981-4374-35-4 | ||
020 | |a 9814374350 |c electronic bk. |9 981-4374-35-0 | ||
035 | |a (OCoLC)794328379 | ||
035 | |a (DE-599)BVBBV043081541 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.35 | |
100 | 1 | |a Korman, Philip |e Verfasser |4 aut | |
245 | 1 | 0 | |a Global Solution Curves for Semilinear Elliptic Equations |
264 | 1 | |a Singapore |b World Scientific |c 2012 | |
300 | |a 1 Online-Ressource (254 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Preface; Contents; 1. Curves of Solutions on General Domains; 1.1 Continuation of solutions; 1.2 Symmetric domains in R2; 1.3 Turning points and the Morse index; 1.4 Convex domains in R2; 1.5 Pohozaev's identity and non-existence of solutions for elliptic systems; 1.5.1 Non-existence of solutions in the presence of supercritical and lower order terms; 1.5.2 Non-existence of solutions for a class of systems; 1.5.3 Pohozhaev's identity for a version of p-Laplace equation; 1.6 Problems at resonance; 2. Curves of Solutions on Balls; 2.1 Preliminary results | ||
500 | |a 2.2 Positivity of solution to the linearized problem2.3 Uniqueness of the solution curve; 2.4 Direction of a turn and exact multiplicity; 2.5 On a class of concave-convex equations; 2.6 Monotone separation of graphs; 2.7 The case of polynomial f(u) in two dimensions; 2.8 The case when f(0) <0; 2.9 Symmetry breaking; 2.10 Special equations; 2.11 Oscillations of the solution curve; 2.11.1 Asymptotics of some oscillatory integrals; 2.11.2 Reduction to the oscillatory integrals; 2.12 Uniqueness for non-autonomous problems; 2.12.1 Radial symmetry for the linearized equation | ||
500 | |a 2.13 Exact multiplicity for non-autonomous problems2.14 Numerical computation of solutions; 2.14.1 Using power series approximation; 2.14.2 Application to singular solutions; 2.15 Radial solutions of Neumann problem; 2.15.1 A computer assisted study of ground state solutions; 2.16 Global solution curves for a class of elliptic systems; 2.16.1 Preliminary results; 2.16.2 Global solution curves for Hamiltonian systems; 2.16.3 A class of special systems; 2.17 The case of a "thin" annulus; 2.18 A class of p-Laplace problems; 3. Two Point Boundary Value Problems | ||
500 | |a 3.1 Positive solutions of autonomous problems3.2 Direction of the turn; 3.3 Stability and instability of solutions; 3.3.1 S-shaped curves of combustion theory; 3.3.2 An extension of the stability condition; 3.4 S-shaped solution curves; 3.5 Computing the location and the direction of bifurcation; 3.5.1 Sign changing solutions; 3.6 A class of symmetric nonlinearities; 3.7 General nonlinearities; 3.8 Infinitely many curves with pitchfork bifurcation; 3.9 An oscillatory bifurcation from zero: A model example; 3.10 Exact multiplicity for Hamiltonian systems; 3.11 Clamped elastic beam equation | ||
500 | |a 3.11.1 Preliminary results3.11.2 Exact multiplicity of solutions; 3.12 Steady states of convective equations; 3.13 Quasilinear boundary value problems; 3.13.1 Numerical computations for the prescribed mean curvature equation; 3.14 The time map for quasilinear equations; 3.15 Uniqueness for a p-Laplace case; Bibliography | ||
500 | |a This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Differential Equations / General |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Differential equations, Elliptic | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Dirichlet-Problem |0 (DE-588)4129762-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | 1 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 0 | 2 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | 3 | |a Dirichlet-Problem |0 (DE-588)4129762-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028505733 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175474096603136 |
---|---|
any_adam_object | |
author | Korman, Philip |
author_facet | Korman, Philip |
author_role | aut |
author_sort | Korman, Philip |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV043081541 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)794328379 (DE-599)BVBBV043081541 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05421nmm a2200577zc 4500</leader><controlfield tag="001">BV043081541</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814374354</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4374-35-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814374350</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4374-35-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794328379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043081541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korman, Philip</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Solution Curves for Semilinear Elliptic Equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (254 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Contents; 1. Curves of Solutions on General Domains; 1.1 Continuation of solutions; 1.2 Symmetric domains in R2; 1.3 Turning points and the Morse index; 1.4 Convex domains in R2; 1.5 Pohozaev's identity and non-existence of solutions for elliptic systems; 1.5.1 Non-existence of solutions in the presence of supercritical and lower order terms; 1.5.2 Non-existence of solutions for a class of systems; 1.5.3 Pohozhaev's identity for a version of p-Laplace equation; 1.6 Problems at resonance; 2. Curves of Solutions on Balls; 2.1 Preliminary results</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2 Positivity of solution to the linearized problem2.3 Uniqueness of the solution curve; 2.4 Direction of a turn and exact multiplicity; 2.5 On a class of concave-convex equations; 2.6 Monotone separation of graphs; 2.7 The case of polynomial f(u) in two dimensions; 2.8 The case when f(0) <0; 2.9 Symmetry breaking; 2.10 Special equations; 2.11 Oscillations of the solution curve; 2.11.1 Asymptotics of some oscillatory integrals; 2.11.2 Reduction to the oscillatory integrals; 2.12 Uniqueness for non-autonomous problems; 2.12.1 Radial symmetry for the linearized equation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.13 Exact multiplicity for non-autonomous problems2.14 Numerical computation of solutions; 2.14.1 Using power series approximation; 2.14.2 Application to singular solutions; 2.15 Radial solutions of Neumann problem; 2.15.1 A computer assisted study of ground state solutions; 2.16 Global solution curves for a class of elliptic systems; 2.16.1 Preliminary results; 2.16.2 Global solution curves for Hamiltonian systems; 2.16.3 A class of special systems; 2.17 The case of a "thin" annulus; 2.18 A class of p-Laplace problems; 3. Two Point Boundary Value Problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.1 Positive solutions of autonomous problems3.2 Direction of the turn; 3.3 Stability and instability of solutions; 3.3.1 S-shaped curves of combustion theory; 3.3.2 An extension of the stability condition; 3.4 S-shaped solution curves; 3.5 Computing the location and the direction of bifurcation; 3.5.1 Sign changing solutions; 3.6 A class of symmetric nonlinearities; 3.7 General nonlinearities; 3.8 Infinitely many curves with pitchfork bifurcation; 3.9 An oscillatory bifurcation from zero: A model example; 3.10 Exact multiplicity for Hamiltonian systems; 3.11 Clamped elastic beam equation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.11.1 Preliminary results3.11.2 Exact multiplicity of solutions; 3.12 Steady states of convective equations; 3.13 Quasilinear boundary value problems; 3.13.1 Numerical computations for the prescribed mean curvature equation; 3.14 The time map for quasilinear equations; 3.15 Uniqueness for a p-Laplace case; Bibliography</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichlet-Problem</subfield><subfield code="0">(DE-588)4129762-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Dirichlet-Problem</subfield><subfield code="0">(DE-588)4129762-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028505733</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043081541 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:51Z |
institution | BVB |
isbn | 9789814374354 9814374350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028505733 |
oclc_num | 794328379 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (254 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
spelling | Korman, Philip Verfasser aut Global Solution Curves for Semilinear Elliptic Equations Singapore World Scientific 2012 1 Online-Ressource (254 pages) txt rdacontent c rdamedia cr rdacarrier Preface; Contents; 1. Curves of Solutions on General Domains; 1.1 Continuation of solutions; 1.2 Symmetric domains in R2; 1.3 Turning points and the Morse index; 1.4 Convex domains in R2; 1.5 Pohozaev's identity and non-existence of solutions for elliptic systems; 1.5.1 Non-existence of solutions in the presence of supercritical and lower order terms; 1.5.2 Non-existence of solutions for a class of systems; 1.5.3 Pohozhaev's identity for a version of p-Laplace equation; 1.6 Problems at resonance; 2. Curves of Solutions on Balls; 2.1 Preliminary results 2.2 Positivity of solution to the linearized problem2.3 Uniqueness of the solution curve; 2.4 Direction of a turn and exact multiplicity; 2.5 On a class of concave-convex equations; 2.6 Monotone separation of graphs; 2.7 The case of polynomial f(u) in two dimensions; 2.8 The case when f(0) <0; 2.9 Symmetry breaking; 2.10 Special equations; 2.11 Oscillations of the solution curve; 2.11.1 Asymptotics of some oscillatory integrals; 2.11.2 Reduction to the oscillatory integrals; 2.12 Uniqueness for non-autonomous problems; 2.12.1 Radial symmetry for the linearized equation 2.13 Exact multiplicity for non-autonomous problems2.14 Numerical computation of solutions; 2.14.1 Using power series approximation; 2.14.2 Application to singular solutions; 2.15 Radial solutions of Neumann problem; 2.15.1 A computer assisted study of ground state solutions; 2.16 Global solution curves for a class of elliptic systems; 2.16.1 Preliminary results; 2.16.2 Global solution curves for Hamiltonian systems; 2.16.3 A class of special systems; 2.17 The case of a "thin" annulus; 2.18 A class of p-Laplace problems; 3. Two Point Boundary Value Problems 3.1 Positive solutions of autonomous problems3.2 Direction of the turn; 3.3 Stability and instability of solutions; 3.3.1 S-shaped curves of combustion theory; 3.3.2 An extension of the stability condition; 3.4 S-shaped solution curves; 3.5 Computing the location and the direction of bifurcation; 3.5.1 Sign changing solutions; 3.6 A class of symmetric nonlinearities; 3.7 General nonlinearities; 3.8 Infinitely many curves with pitchfork bifurcation; 3.9 An oscillatory bifurcation from zero: A model example; 3.10 Exact multiplicity for Hamiltonian systems; 3.11 Clamped elastic beam equation 3.11.1 Preliminary results3.11.2 Exact multiplicity of solutions; 3.12 Steady states of convective equations; 3.13 Quasilinear boundary value problems; 3.13.1 Numerical computations for the prescribed mean curvature equation; 3.14 The time map for quasilinear equations; 3.15 Uniqueness for a p-Laplace case; Bibliography This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results Mathematics MATHEMATICS / Differential Equations / General bisacsh Mathematik Differential equations, Elliptic Mathematical analysis Dirichlet-Problem (DE-588)4129762-3 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 s Elliptische Kurve (DE-588)4014487-2 s Verzweigung Mathematik (DE-588)4078889-1 s Dirichlet-Problem (DE-588)4129762-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Korman, Philip Global Solution Curves for Semilinear Elliptic Equations Mathematics MATHEMATICS / Differential Equations / General bisacsh Mathematik Differential equations, Elliptic Mathematical analysis Dirichlet-Problem (DE-588)4129762-3 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Elliptische Kurve (DE-588)4014487-2 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
subject_GND | (DE-588)4129762-3 (DE-588)4078889-1 (DE-588)4014487-2 (DE-588)4014485-9 |
title | Global Solution Curves for Semilinear Elliptic Equations |
title_auth | Global Solution Curves for Semilinear Elliptic Equations |
title_exact_search | Global Solution Curves for Semilinear Elliptic Equations |
title_full | Global Solution Curves for Semilinear Elliptic Equations |
title_fullStr | Global Solution Curves for Semilinear Elliptic Equations |
title_full_unstemmed | Global Solution Curves for Semilinear Elliptic Equations |
title_short | Global Solution Curves for Semilinear Elliptic Equations |
title_sort | global solution curves for semilinear elliptic equations |
topic | Mathematics MATHEMATICS / Differential Equations / General bisacsh Mathematik Differential equations, Elliptic Mathematical analysis Dirichlet-Problem (DE-588)4129762-3 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Elliptische Kurve (DE-588)4014487-2 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
topic_facet | Mathematics MATHEMATICS / Differential Equations / General Mathematik Differential equations, Elliptic Mathematical analysis Dirichlet-Problem Verzweigung Mathematik Elliptische Kurve Elliptische Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457181 |
work_keys_str_mv | AT kormanphilip globalsolutioncurvesforsemilinearellipticequations |