Geometric Modular Forms and Elliptic Curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2011
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Preface to the second edition; Preface; Contents; 1. An Algebro-Geometric Tool Box; 1.1 Sheaves; 1.1.1 Sheaves and Presheaves; 1.1.2 Sheafication; 1.1.3 Sheaf Kernel and Cokernel; 1.2 Schemes; 1.2.1 Local Ringed Spaces; 1.2.2 Schemes as Local Ringed Spaces; 1.2.3 Sheaves over Schemes; 1.2.4 Topological Properties of Schemes; 1.3 Projective Schemes; 1.3.1 Graded Rings; 1.3.2 Functor Proj; 1.3.3 Sheaves on Projective Schemes; 1.4 Categories and Functors; 1.4.1 Categories; 1.4.2 Functors; 1.4.3 Schemes as Functors; 1.4.4 Abelian Categories; 1.5 Applications of the Key-Lemma 1.5.1 Sheaf of Differential Forms on Schemes1.5.2 Fiber Products; 1.5.3 Inverse Image of Sheaves; 1.5.4 Affine Schemes; 1.5.5 Morphisms into a Projective Space; 1.6 Group Schemes; 1.6.1 Group Schemes as Functors; 1.6.2 Kernel and Cokernel; 1.6.3 Bialgebras; 1.6.4 Locally Free Groups; 1.6.5 Schematic Representations; 1.7 Cartier Duality; 1.7.1 Duality of Bialgebras; 1.7.2 Duality of Locally Free Groups; 1.8 Quotients by a Group Scheme; 1.8.1 Naive Quotients; 1.8.2 Categorical Quotients; 1.8.3 Geometric Quotients; 1.9 Morphisms; 1.9.1 Topological Definitions; 1.9.2 Diffeo-Geometric Definitions 1.9.3 Applications1.10 Cohomology of Coherent Sheaves; 1.10.1 Coherent Cohomology; 1.10.2 Summary of Known Facts; 1.10.3 Cohomological Dimension; 1.11 Descent; 1.11.1 Covering Data; 1.11.2 Descent Data; 1.11.3 Descent of Schemes; 1.12 Barsotti-Tate Groups; 1.12.1 p-Divisible Abelian Sheaf; Exercise; 1.12.2 Connected- Etale Exact Sequence; 1.12.3 Ordinary Barsotti-Tate Group; 1.13 Formal Scheme; 1.13.1 Open Subschemes as Functors; Exercises; 1.13.2 Examples of Formal Schemes; 1.13.3 Deformation Functors; 1.13.4 Connected Formal Groups; 2. Elliptic Curves; 2.1 Curves and Divisors 2.1.1 Cartier Divisors2.1.2 Serre-Grothendieck Duality; 2.1.3 Riemann-Roch Theorem; 2.1.4 Relative Riemann-Roch Theorem; 2.2 Elliptic Curves; 2.2.1 Definition; 2.2.2 Abel's Theorem; 2.2.3 Holomorphic Differentials; 2.2.4 Taylor Expansion of Differentials; 2.2.5 Weierstrass Equations of Elliptic Curves; 2.2.6 Moduli of Weierstrass Type; 2.3 Geometric Modular Forms of Level 1; 2.3.1 Functorial Definition; 2.3.2 Coarse Moduli Scheme; 2.3.3 Fields of Moduli; 2.4 Elliptic Curves over C; 2.4.1 Topological Fundamental Groups; 2.4.2 Classical Weierstrass Theory; 2.4.3 Complex Modular Forms 2.5 Elliptic Curves over p-Adic Fields2.5.1 Power Series Identities; 2.5.2 Universal Tate Curves; 2.5.3 Etale Covering of Tate Curves; 2.6 Level Structures; 2.6.1 Isogenies; 2.6.2 Level N Moduli Problems; 2.6.3 Generality of Elliptic Curves; 2.6.4 Proof of Theorem 2.6.8; Exercise; 2.6.5 Geometric Modular Forms of Level N; 2.7 L-Functions of Elliptic Curves; 2.7.1 L-Functions over Finite Fields; 2.7.2 Hasse-Weil L-Function; 2.8 Regularity; 2.8.1 Regular Rings; 2.8.2 Regular Moduli Varieties; 2.9 p-Ordinary Moduli Problems; 2.9.1 The Hasse Invariant; 2.9.2 Ordinary Moduli of p-Power Level 2.9.3 Irreducibility of p-Ordinary Moduli This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li |
Beschreibung: | 1 Online-Ressource (468 pages) |
ISBN: | 9789814368650 9814368652 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043081487 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814368650 |c electronic bk. |9 978-981-4368-65-0 | ||
020 | |a 9814368652 |c electronic bk. |9 981-4368-65-2 | ||
035 | |a (OCoLC)794328360 | ||
035 | |a (DE-599)BVBBV043081487 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.352 | |
082 | 0 | |a 516.3/52 | |
100 | 1 | |a Hida, Haruzo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Modular Forms and Elliptic Curves |
250 | |a 2nd ed | ||
264 | 1 | |a Singapore |b World Scientific |c 2011 | |
300 | |a 1 Online-Ressource (468 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Preface to the second edition; Preface; Contents; 1. An Algebro-Geometric Tool Box; 1.1 Sheaves; 1.1.1 Sheaves and Presheaves; 1.1.2 Sheafication; 1.1.3 Sheaf Kernel and Cokernel; 1.2 Schemes; 1.2.1 Local Ringed Spaces; 1.2.2 Schemes as Local Ringed Spaces; 1.2.3 Sheaves over Schemes; 1.2.4 Topological Properties of Schemes; 1.3 Projective Schemes; 1.3.1 Graded Rings; 1.3.2 Functor Proj; 1.3.3 Sheaves on Projective Schemes; 1.4 Categories and Functors; 1.4.1 Categories; 1.4.2 Functors; 1.4.3 Schemes as Functors; 1.4.4 Abelian Categories; 1.5 Applications of the Key-Lemma | ||
500 | |a 1.5.1 Sheaf of Differential Forms on Schemes1.5.2 Fiber Products; 1.5.3 Inverse Image of Sheaves; 1.5.4 Affine Schemes; 1.5.5 Morphisms into a Projective Space; 1.6 Group Schemes; 1.6.1 Group Schemes as Functors; 1.6.2 Kernel and Cokernel; 1.6.3 Bialgebras; 1.6.4 Locally Free Groups; 1.6.5 Schematic Representations; 1.7 Cartier Duality; 1.7.1 Duality of Bialgebras; 1.7.2 Duality of Locally Free Groups; 1.8 Quotients by a Group Scheme; 1.8.1 Naive Quotients; 1.8.2 Categorical Quotients; 1.8.3 Geometric Quotients; 1.9 Morphisms; 1.9.1 Topological Definitions; 1.9.2 Diffeo-Geometric Definitions | ||
500 | |a 1.9.3 Applications1.10 Cohomology of Coherent Sheaves; 1.10.1 Coherent Cohomology; 1.10.2 Summary of Known Facts; 1.10.3 Cohomological Dimension; 1.11 Descent; 1.11.1 Covering Data; 1.11.2 Descent Data; 1.11.3 Descent of Schemes; 1.12 Barsotti-Tate Groups; 1.12.1 p-Divisible Abelian Sheaf; Exercise; 1.12.2 Connected- Etale Exact Sequence; 1.12.3 Ordinary Barsotti-Tate Group; 1.13 Formal Scheme; 1.13.1 Open Subschemes as Functors; Exercises; 1.13.2 Examples of Formal Schemes; 1.13.3 Deformation Functors; 1.13.4 Connected Formal Groups; 2. Elliptic Curves; 2.1 Curves and Divisors | ||
500 | |a 2.1.1 Cartier Divisors2.1.2 Serre-Grothendieck Duality; 2.1.3 Riemann-Roch Theorem; 2.1.4 Relative Riemann-Roch Theorem; 2.2 Elliptic Curves; 2.2.1 Definition; 2.2.2 Abel's Theorem; 2.2.3 Holomorphic Differentials; 2.2.4 Taylor Expansion of Differentials; 2.2.5 Weierstrass Equations of Elliptic Curves; 2.2.6 Moduli of Weierstrass Type; 2.3 Geometric Modular Forms of Level 1; 2.3.1 Functorial Definition; 2.3.2 Coarse Moduli Scheme; 2.3.3 Fields of Moduli; 2.4 Elliptic Curves over C; 2.4.1 Topological Fundamental Groups; 2.4.2 Classical Weierstrass Theory; 2.4.3 Complex Modular Forms | ||
500 | |a 2.5 Elliptic Curves over p-Adic Fields2.5.1 Power Series Identities; 2.5.2 Universal Tate Curves; 2.5.3 Etale Covering of Tate Curves; 2.6 Level Structures; 2.6.1 Isogenies; 2.6.2 Level N Moduli Problems; 2.6.3 Generality of Elliptic Curves; 2.6.4 Proof of Theorem 2.6.8; Exercise; 2.6.5 Geometric Modular Forms of Level N; 2.7 L-Functions of Elliptic Curves; 2.7.1 L-Functions over Finite Fields; 2.7.2 Hasse-Weil L-Function; 2.8 Regularity; 2.8.1 Regular Rings; 2.8.2 Regular Moduli Varieties; 2.9 p-Ordinary Moduli Problems; 2.9.1 The Hasse Invariant; 2.9.2 Ordinary Moduli of p-Power Level | ||
500 | |a 2.9.3 Irreducibility of p-Ordinary Moduli | ||
500 | |a This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li | ||
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Curves, Elliptic | |
650 | 4 | |a Forms, Modular | |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 0 | 1 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028505679 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175473991745536 |
---|---|
any_adam_object | |
author | Hida, Haruzo |
author_facet | Hida, Haruzo |
author_role | aut |
author_sort | Hida, Haruzo |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV043081487 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)794328360 (DE-599)BVBBV043081487 |
dewey-full | 516.352 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.352 516.3/52 |
dewey-search | 516.352 516.3/52 |
dewey-sort | 3516.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05575nmm a2200565zc 4500</leader><controlfield tag="001">BV043081487</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814368650</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4368-65-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814368652</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4368-65-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794328360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043081487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.352</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hida, Haruzo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Modular Forms and Elliptic Curves</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (468 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface to the second edition; Preface; Contents; 1. An Algebro-Geometric Tool Box; 1.1 Sheaves; 1.1.1 Sheaves and Presheaves; 1.1.2 Sheafication; 1.1.3 Sheaf Kernel and Cokernel; 1.2 Schemes; 1.2.1 Local Ringed Spaces; 1.2.2 Schemes as Local Ringed Spaces; 1.2.3 Sheaves over Schemes; 1.2.4 Topological Properties of Schemes; 1.3 Projective Schemes; 1.3.1 Graded Rings; 1.3.2 Functor Proj; 1.3.3 Sheaves on Projective Schemes; 1.4 Categories and Functors; 1.4.1 Categories; 1.4.2 Functors; 1.4.3 Schemes as Functors; 1.4.4 Abelian Categories; 1.5 Applications of the Key-Lemma</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.5.1 Sheaf of Differential Forms on Schemes1.5.2 Fiber Products; 1.5.3 Inverse Image of Sheaves; 1.5.4 Affine Schemes; 1.5.5 Morphisms into a Projective Space; 1.6 Group Schemes; 1.6.1 Group Schemes as Functors; 1.6.2 Kernel and Cokernel; 1.6.3 Bialgebras; 1.6.4 Locally Free Groups; 1.6.5 Schematic Representations; 1.7 Cartier Duality; 1.7.1 Duality of Bialgebras; 1.7.2 Duality of Locally Free Groups; 1.8 Quotients by a Group Scheme; 1.8.1 Naive Quotients; 1.8.2 Categorical Quotients; 1.8.3 Geometric Quotients; 1.9 Morphisms; 1.9.1 Topological Definitions; 1.9.2 Diffeo-Geometric Definitions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.9.3 Applications1.10 Cohomology of Coherent Sheaves; 1.10.1 Coherent Cohomology; 1.10.2 Summary of Known Facts; 1.10.3 Cohomological Dimension; 1.11 Descent; 1.11.1 Covering Data; 1.11.2 Descent Data; 1.11.3 Descent of Schemes; 1.12 Barsotti-Tate Groups; 1.12.1 p-Divisible Abelian Sheaf; Exercise; 1.12.2 Connected- Etale Exact Sequence; 1.12.3 Ordinary Barsotti-Tate Group; 1.13 Formal Scheme; 1.13.1 Open Subschemes as Functors; Exercises; 1.13.2 Examples of Formal Schemes; 1.13.3 Deformation Functors; 1.13.4 Connected Formal Groups; 2. Elliptic Curves; 2.1 Curves and Divisors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.1 Cartier Divisors2.1.2 Serre-Grothendieck Duality; 2.1.3 Riemann-Roch Theorem; 2.1.4 Relative Riemann-Roch Theorem; 2.2 Elliptic Curves; 2.2.1 Definition; 2.2.2 Abel's Theorem; 2.2.3 Holomorphic Differentials; 2.2.4 Taylor Expansion of Differentials; 2.2.5 Weierstrass Equations of Elliptic Curves; 2.2.6 Moduli of Weierstrass Type; 2.3 Geometric Modular Forms of Level 1; 2.3.1 Functorial Definition; 2.3.2 Coarse Moduli Scheme; 2.3.3 Fields of Moduli; 2.4 Elliptic Curves over C; 2.4.1 Topological Fundamental Groups; 2.4.2 Classical Weierstrass Theory; 2.4.3 Complex Modular Forms</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.5 Elliptic Curves over p-Adic Fields2.5.1 Power Series Identities; 2.5.2 Universal Tate Curves; 2.5.3 Etale Covering of Tate Curves; 2.6 Level Structures; 2.6.1 Isogenies; 2.6.2 Level N Moduli Problems; 2.6.3 Generality of Elliptic Curves; 2.6.4 Proof of Theorem 2.6.8; Exercise; 2.6.5 Geometric Modular Forms of Level N; 2.7 L-Functions of Elliptic Curves; 2.7.1 L-Functions over Finite Fields; 2.7.2 Hasse-Weil L-Function; 2.8 Regularity; 2.8.1 Regular Rings; 2.8.2 Regular Moduli Varieties; 2.9 p-Ordinary Moduli Problems; 2.9.1 The Hasse Invariant; 2.9.2 Ordinary Moduli of p-Power Level</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.9.3 Irreducibility of p-Ordinary Moduli</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028505679</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043081487 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:51Z |
institution | BVB |
isbn | 9789814368650 9814368652 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028505679 |
oclc_num | 794328360 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (468 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
spelling | Hida, Haruzo Verfasser aut Geometric Modular Forms and Elliptic Curves 2nd ed Singapore World Scientific 2011 1 Online-Ressource (468 pages) txt rdacontent c rdamedia cr rdacarrier Preface to the second edition; Preface; Contents; 1. An Algebro-Geometric Tool Box; 1.1 Sheaves; 1.1.1 Sheaves and Presheaves; 1.1.2 Sheafication; 1.1.3 Sheaf Kernel and Cokernel; 1.2 Schemes; 1.2.1 Local Ringed Spaces; 1.2.2 Schemes as Local Ringed Spaces; 1.2.3 Sheaves over Schemes; 1.2.4 Topological Properties of Schemes; 1.3 Projective Schemes; 1.3.1 Graded Rings; 1.3.2 Functor Proj; 1.3.3 Sheaves on Projective Schemes; 1.4 Categories and Functors; 1.4.1 Categories; 1.4.2 Functors; 1.4.3 Schemes as Functors; 1.4.4 Abelian Categories; 1.5 Applications of the Key-Lemma 1.5.1 Sheaf of Differential Forms on Schemes1.5.2 Fiber Products; 1.5.3 Inverse Image of Sheaves; 1.5.4 Affine Schemes; 1.5.5 Morphisms into a Projective Space; 1.6 Group Schemes; 1.6.1 Group Schemes as Functors; 1.6.2 Kernel and Cokernel; 1.6.3 Bialgebras; 1.6.4 Locally Free Groups; 1.6.5 Schematic Representations; 1.7 Cartier Duality; 1.7.1 Duality of Bialgebras; 1.7.2 Duality of Locally Free Groups; 1.8 Quotients by a Group Scheme; 1.8.1 Naive Quotients; 1.8.2 Categorical Quotients; 1.8.3 Geometric Quotients; 1.9 Morphisms; 1.9.1 Topological Definitions; 1.9.2 Diffeo-Geometric Definitions 1.9.3 Applications1.10 Cohomology of Coherent Sheaves; 1.10.1 Coherent Cohomology; 1.10.2 Summary of Known Facts; 1.10.3 Cohomological Dimension; 1.11 Descent; 1.11.1 Covering Data; 1.11.2 Descent Data; 1.11.3 Descent of Schemes; 1.12 Barsotti-Tate Groups; 1.12.1 p-Divisible Abelian Sheaf; Exercise; 1.12.2 Connected- Etale Exact Sequence; 1.12.3 Ordinary Barsotti-Tate Group; 1.13 Formal Scheme; 1.13.1 Open Subschemes as Functors; Exercises; 1.13.2 Examples of Formal Schemes; 1.13.3 Deformation Functors; 1.13.4 Connected Formal Groups; 2. Elliptic Curves; 2.1 Curves and Divisors 2.1.1 Cartier Divisors2.1.2 Serre-Grothendieck Duality; 2.1.3 Riemann-Roch Theorem; 2.1.4 Relative Riemann-Roch Theorem; 2.2 Elliptic Curves; 2.2.1 Definition; 2.2.2 Abel's Theorem; 2.2.3 Holomorphic Differentials; 2.2.4 Taylor Expansion of Differentials; 2.2.5 Weierstrass Equations of Elliptic Curves; 2.2.6 Moduli of Weierstrass Type; 2.3 Geometric Modular Forms of Level 1; 2.3.1 Functorial Definition; 2.3.2 Coarse Moduli Scheme; 2.3.3 Fields of Moduli; 2.4 Elliptic Curves over C; 2.4.1 Topological Fundamental Groups; 2.4.2 Classical Weierstrass Theory; 2.4.3 Complex Modular Forms 2.5 Elliptic Curves over p-Adic Fields2.5.1 Power Series Identities; 2.5.2 Universal Tate Curves; 2.5.3 Etale Covering of Tate Curves; 2.6 Level Structures; 2.6.1 Isogenies; 2.6.2 Level N Moduli Problems; 2.6.3 Generality of Elliptic Curves; 2.6.4 Proof of Theorem 2.6.8; Exercise; 2.6.5 Geometric Modular Forms of Level N; 2.7 L-Functions of Elliptic Curves; 2.7.1 L-Functions over Finite Fields; 2.7.2 Hasse-Weil L-Function; 2.8 Regularity; 2.8.1 Regular Rings; 2.8.2 Regular Moduli Varieties; 2.9 p-Ordinary Moduli Problems; 2.9.1 The Hasse Invariant; 2.9.2 Ordinary Moduli of p-Power Level 2.9.3 Irreducibility of p-Ordinary Moduli This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li Mathematics MATHEMATICS / Geometry / Algebraic bisacsh Mathematik Curves, Elliptic Forms, Modular Modulraum (DE-588)4183462-8 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 s Modulraum (DE-588)4183462-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hida, Haruzo Geometric Modular Forms and Elliptic Curves Mathematics MATHEMATICS / Geometry / Algebraic bisacsh Mathematik Curves, Elliptic Forms, Modular Modulraum (DE-588)4183462-8 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
subject_GND | (DE-588)4183462-8 (DE-588)4014487-2 |
title | Geometric Modular Forms and Elliptic Curves |
title_auth | Geometric Modular Forms and Elliptic Curves |
title_exact_search | Geometric Modular Forms and Elliptic Curves |
title_full | Geometric Modular Forms and Elliptic Curves |
title_fullStr | Geometric Modular Forms and Elliptic Curves |
title_full_unstemmed | Geometric Modular Forms and Elliptic Curves |
title_short | Geometric Modular Forms and Elliptic Curves |
title_sort | geometric modular forms and elliptic curves |
topic | Mathematics MATHEMATICS / Geometry / Algebraic bisacsh Mathematik Curves, Elliptic Forms, Modular Modulraum (DE-588)4183462-8 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
topic_facet | Mathematics MATHEMATICS / Geometry / Algebraic Mathematik Curves, Elliptic Forms, Modular Modulraum Elliptische Kurve |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457157 |
work_keys_str_mv | AT hidaharuzo geometricmodularformsandellipticcurves |