Universality in nonequilibrium lattice systems: theoretical foundations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore, SG
World Scientific
c2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- - 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- - 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- - 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems |
Beschreibung: | 1 Online-Ressource (xix, 276 p.) |
ISBN: | 128196090X 9781281960900 9789812812278 9789812812292 9812812296 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043081027 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 128196090X |9 1-281-96090-X | ||
020 | |a 9781281960900 |9 978-1-281-96090-0 | ||
020 | |a 9789812812278 |9 978-981-281-227-8 | ||
020 | |a 9789812812292 |c electronic bk. |9 978-981-281-229-2 | ||
020 | |a 9812812296 |c electronic bk. |9 981-281-229-6 | ||
035 | |a (OCoLC)316005566 | ||
035 | |a (DE-599)BVBBV043081027 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 501.17 22 |2 22 | |
100 | 1 | |a Ódor, Géza |e Verfasser |4 aut | |
245 | 1 | 0 | |a Universality in nonequilibrium lattice systems |b theoretical foundations |c Géza Ódor |
264 | 1 | |a Singapore, SG |b World Scientific |c c2008 | |
300 | |a 1 Online-Ressource (xix, 276 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- | ||
500 | |a - 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- | ||
500 | |a - 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- | ||
500 | |a - 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook | ||
500 | |a Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems | ||
650 | 7 | |a SCIENCE / Philosophy & Social Aspects |2 bisacsh | |
650 | 4 | |a Scaling laws (Statistical physics) | |
650 | 4 | |a Lattice theory | |
650 | 4 | |a Self-organizing systems | |
650 | 4 | |a Phase transformations (Statistical physics) | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Nichtgleichgewicht |0 (DE-588)4171730-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Universalität |0 (DE-588)4186918-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gittermodell |0 (DE-588)4226961-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 0 | 1 | |a Nichtgleichgewicht |0 (DE-588)4171730-2 |D s |
689 | 0 | 2 | |a Universalität |0 (DE-588)4186918-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028505218 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175473301782528 |
---|---|
any_adam_object | |
author | Ódor, Géza |
author_facet | Ódor, Géza |
author_role | aut |
author_sort | Ódor, Géza |
author_variant | g ó gó |
building | Verbundindex |
bvnumber | BV043081027 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)316005566 (DE-599)BVBBV043081027 |
dewey-full | 501.1722 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 501 - Philosophy and theory |
dewey-raw | 501.17 22 |
dewey-search | 501.17 22 |
dewey-sort | 3501.17 222 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06470nmm a2200601zc 4500</leader><controlfield tag="001">BV043081027</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128196090X</subfield><subfield code="9">1-281-96090-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281960900</subfield><subfield code="9">978-1-281-96090-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812812278</subfield><subfield code="9">978-981-281-227-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812812292</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-229-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812812296</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-229-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316005566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043081027</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">501.17 22</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ódor, Géza</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universality in nonequilibrium lattice systems</subfield><subfield code="b">theoretical foundations</subfield><subfield code="c">Géza Ódor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore, SG</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 276 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Philosophy & Social Aspects</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaling laws (Statistical physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organizing systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformations (Statistical physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtgleichgewicht</subfield><subfield code="0">(DE-588)4171730-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universalität</subfield><subfield code="0">(DE-588)4186918-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtgleichgewicht</subfield><subfield code="0">(DE-588)4171730-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Universalität</subfield><subfield code="0">(DE-588)4186918-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028505218</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043081027 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:51Z |
institution | BVB |
isbn | 128196090X 9781281960900 9789812812278 9789812812292 9812812296 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028505218 |
oclc_num | 316005566 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xix, 276 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Ódor, Géza Verfasser aut Universality in nonequilibrium lattice systems theoretical foundations Géza Ódor Singapore, SG World Scientific c2008 1 Online-Ressource (xix, 276 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- - 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- - 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- - 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems SCIENCE / Philosophy & Social Aspects bisacsh Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd rswk-swf Universalität (DE-588)4186918-7 gnd rswk-swf Gittermodell (DE-588)4226961-1 gnd rswk-swf Gittermodell (DE-588)4226961-1 s Nichtgleichgewicht (DE-588)4171730-2 s Universalität (DE-588)4186918-7 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ódor, Géza Universality in nonequilibrium lattice systems theoretical foundations SCIENCE / Philosophy & Social Aspects bisacsh Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd Universalität (DE-588)4186918-7 gnd Gittermodell (DE-588)4226961-1 gnd |
subject_GND | (DE-588)4171730-2 (DE-588)4186918-7 (DE-588)4226961-1 |
title | Universality in nonequilibrium lattice systems theoretical foundations |
title_auth | Universality in nonequilibrium lattice systems theoretical foundations |
title_exact_search | Universality in nonequilibrium lattice systems theoretical foundations |
title_full | Universality in nonequilibrium lattice systems theoretical foundations Géza Ódor |
title_fullStr | Universality in nonequilibrium lattice systems theoretical foundations Géza Ódor |
title_full_unstemmed | Universality in nonequilibrium lattice systems theoretical foundations Géza Ódor |
title_short | Universality in nonequilibrium lattice systems |
title_sort | universality in nonequilibrium lattice systems theoretical foundations |
title_sub | theoretical foundations |
topic | SCIENCE / Philosophy & Social Aspects bisacsh Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd Universalität (DE-588)4186918-7 gnd Gittermodell (DE-588)4226961-1 gnd |
topic_facet | SCIENCE / Philosophy & Social Aspects Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht Universalität Gittermodell |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521157 |
work_keys_str_mv | AT odorgeza universalityinnonequilibriumlatticesystemstheoreticalfoundations |