Seiberg-Witten theory and integrable systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©1999
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 238-253) 1. Introduction -- 2. SUSY Yang-Mills theories -- 3. Integrable systems -- 4. Integrable equations in 2D topological string theories -- 5. The Seiberg-Witten anzatz -- 6. Generating differential and Whitham hierarchy -- 7. Prepotential of the Seiberg-Witten Theory -- 8. Seiberg-Witten theory from strings In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics - systems of integrable nonlinear differential equations and their algebro-geometric solutions. First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain. Several "toy-model" examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories. Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory |
Beschreibung: | 1 Online-Ressource (253 pages) |
ISBN: | 1283635836 9781283635837 9789810236366 9789810236373 9789812815873 9810236360 9810236379 9812815872 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043078187 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1999 |||| o||u| ||||||eng d | ||
020 | |a 1283635836 |9 1-283-63583-6 | ||
020 | |a 9781283635837 |9 978-1-283-63583-7 | ||
020 | |a 9789810236366 |9 978-981-02-3636-6 | ||
020 | |a 9789810236373 |9 978-981-02-3637-3 | ||
020 | |a 9789812815873 |c electronic bk. |9 978-981-281-587-3 | ||
020 | |a 9810236360 |9 981-02-3636-0 | ||
020 | |a 9810236379 |9 981-02-3637-9 | ||
020 | |a 9812815872 |c electronic bk. |9 981-281-587-2 | ||
035 | |a (OCoLC)815767595 | ||
035 | |a (DE-599)BVBBV043078187 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514.72 |2 22 | |
100 | 1 | |a Marshakov, Andrei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Seiberg-Witten theory and integrable systems |c Andrei Mardhakov |
264 | 1 | |a Singapore |b World Scientific |c ©1999 | |
300 | |a 1 Online-Ressource (253 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 238-253) | ||
500 | |a 1. Introduction -- 2. SUSY Yang-Mills theories -- 3. Integrable systems -- 4. Integrable equations in 2D topological string theories -- 5. The Seiberg-Witten anzatz -- 6. Generating differential and Whitham hierarchy -- 7. Prepotential of the Seiberg-Witten Theory -- 8. Seiberg-Witten theory from strings | ||
500 | |a In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics - systems of integrable nonlinear differential equations and their algebro-geometric solutions. First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. | ||
500 | |a Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain. Several "toy-model" examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. | ||
500 | |a The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories. Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Integraalmeetkunde |2 gtt | |
650 | 4 | |a Seiberg-Witten invariants | |
650 | 4 | |a Four-manifolds (Topology) | |
650 | 4 | |a String models | |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |D s |
689 | 0 | 2 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028502379 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175467843944448 |
---|---|
any_adam_object | |
author | Marshakov, Andrei |
author_facet | Marshakov, Andrei |
author_role | aut |
author_sort | Marshakov, Andrei |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV043078187 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)815767595 (DE-599)BVBBV043078187 |
dewey-full | 514.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.72 |
dewey-search | 514.72 |
dewey-sort | 3514.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04933nmm a2200613zc 4500</leader><controlfield tag="001">BV043078187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283635836</subfield><subfield code="9">1-283-63583-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283635837</subfield><subfield code="9">978-1-283-63583-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810236366</subfield><subfield code="9">978-981-02-3636-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810236373</subfield><subfield code="9">978-981-02-3637-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812815873</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-587-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810236360</subfield><subfield code="9">981-02-3636-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810236379</subfield><subfield code="9">981-02-3637-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812815872</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-587-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815767595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043078187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marshakov, Andrei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seiberg-Witten theory and integrable systems</subfield><subfield code="c">Andrei Mardhakov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (253 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 238-253)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction -- 2. SUSY Yang-Mills theories -- 3. Integrable systems -- 4. Integrable equations in 2D topological string theories -- 5. The Seiberg-Witten anzatz -- 6. Generating differential and Whitham hierarchy -- 7. Prepotential of the Seiberg-Witten Theory -- 8. Seiberg-Witten theory from strings</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics - systems of integrable nonlinear differential equations and their algebro-geometric solutions. First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain. Several "toy-model" examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories. Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integraalmeetkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seiberg-Witten invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Four-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">String models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028502379</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043078187 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:45Z |
institution | BVB |
isbn | 1283635836 9781283635837 9789810236366 9789810236373 9789812815873 9810236360 9810236379 9812815872 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028502379 |
oclc_num | 815767595 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (253 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific |
record_format | marc |
spelling | Marshakov, Andrei Verfasser aut Seiberg-Witten theory and integrable systems Andrei Mardhakov Singapore World Scientific ©1999 1 Online-Ressource (253 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 238-253) 1. Introduction -- 2. SUSY Yang-Mills theories -- 3. Integrable systems -- 4. Integrable equations in 2D topological string theories -- 5. The Seiberg-Witten anzatz -- 6. Generating differential and Whitham hierarchy -- 7. Prepotential of the Seiberg-Witten Theory -- 8. Seiberg-Witten theory from strings In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics - systems of integrable nonlinear differential equations and their algebro-geometric solutions. First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain. Several "toy-model" examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories. Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory MATHEMATICS / Topology bisacsh Integraalmeetkunde gtt Seiberg-Witten invariants Four-manifolds (Topology) String models Integrables System (DE-588)4114032-1 gnd rswk-swf Seiberg-Witten-Invariante (DE-588)4430370-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Seiberg-Witten-Invariante (DE-588)4430370-1 s Integrables System (DE-588)4114032-1 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marshakov, Andrei Seiberg-Witten theory and integrable systems MATHEMATICS / Topology bisacsh Integraalmeetkunde gtt Seiberg-Witten invariants Four-manifolds (Topology) String models Integrables System (DE-588)4114032-1 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4114032-1 (DE-588)4430370-1 (DE-588)4047984-5 |
title | Seiberg-Witten theory and integrable systems |
title_auth | Seiberg-Witten theory and integrable systems |
title_exact_search | Seiberg-Witten theory and integrable systems |
title_full | Seiberg-Witten theory and integrable systems Andrei Mardhakov |
title_fullStr | Seiberg-Witten theory and integrable systems Andrei Mardhakov |
title_full_unstemmed | Seiberg-Witten theory and integrable systems Andrei Mardhakov |
title_short | Seiberg-Witten theory and integrable systems |
title_sort | seiberg witten theory and integrable systems |
topic | MATHEMATICS / Topology bisacsh Integraalmeetkunde gtt Seiberg-Witten invariants Four-manifolds (Topology) String models Integrables System (DE-588)4114032-1 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | MATHEMATICS / Topology Integraalmeetkunde Seiberg-Witten invariants Four-manifolds (Topology) String models Integrables System Seiberg-Witten-Invariante Quantenfeldtheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=491517 |
work_keys_str_mv | AT marshakovandrei seibergwittentheoryandintegrablesystems |