Local analytic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2001
|
Schriftenreihe: | Pure and applied mathematics (Academic Press)
14 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Originally published: New York : Academic Press, ©1964, in series Pure and applied mathematics (Academic Press) ; 14 Includes bibliographical references (pages 471-474) and indexes This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively |
Beschreibung: | 1 Online-Ressource (xv, 488 pages) |
ISBN: | 1281951854 9780123745644 9781281951854 9789810245054 9789812810342 981024505X 981281034X |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043075635 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2001 |||| o||u| ||||||eng d | ||
020 | |a 1281951854 |9 1-281-95185-4 | ||
020 | |a 9780123745644 |9 978-0-12-374564-4 | ||
020 | |a 9781281951854 |9 978-1-281-95185-4 | ||
020 | |a 9789810245054 |9 978-981-02-4505-4 | ||
020 | |a 9789812810342 |c electronic bk. |9 978-981-281-034-2 | ||
020 | |a 981024505X |9 981-02-4505-X | ||
020 | |a 981281034X |c electronic bk. |9 981-281-034-X | ||
035 | |a (OCoLC)646775662 | ||
035 | |a (DE-599)BVBBV043075635 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.3 |2 21 | |
100 | 1 | |a Abhyankar, Shreeram Shankar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Local analytic geometry |c Shreeram Shankar Abhyankar |
264 | 1 | |a Singapore |b World Scientific |c ©2001 | |
300 | |a 1 Online-Ressource (xv, 488 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 14 | |
500 | |a Originally published: New York : Academic Press, ©1964, in series Pure and applied mathematics (Academic Press) ; 14 | ||
500 | |a Includes bibliographical references (pages 471-474) and indexes | ||
500 | |a This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively | ||
650 | 7 | |a MATHEMATICS / Geometry / Analytic |2 bisacsh | |
650 | 7 | |a Functional analysis |2 fast | |
650 | 7 | |a Geometry, Analytic |2 fast | |
650 | 4 | |a Geometry, Analytic | |
650 | 4 | |a Functional analysis | |
650 | 0 | 7 | |a Analytische Menge |0 (DE-588)4142351-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Funktion |0 (DE-588)4142348-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Analytische Funktion |0 (DE-588)4142348-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Analytische Menge |0 (DE-588)4142351-3 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028499827 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175462933463040 |
---|---|
any_adam_object | |
author | Abhyankar, Shreeram Shankar |
author_facet | Abhyankar, Shreeram Shankar |
author_role | aut |
author_sort | Abhyankar, Shreeram Shankar |
author_variant | s s a ss ssa |
building | Verbundindex |
bvnumber | BV043075635 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)646775662 (DE-599)BVBBV043075635 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04364nmm a2200685zcb4500</leader><controlfield tag="001">BV043075635</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281951854</subfield><subfield code="9">1-281-95185-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123745644</subfield><subfield code="9">978-0-12-374564-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281951854</subfield><subfield code="9">978-1-281-95185-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810245054</subfield><subfield code="9">978-981-02-4505-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810342</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-034-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981024505X</subfield><subfield code="9">981-02-4505-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981281034X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-034-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646775662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043075635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhyankar, Shreeram Shankar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local analytic geometry</subfield><subfield code="c">Shreeram Shankar Abhyankar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 488 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published: New York : Academic Press, ©1964, in series Pure and applied mathematics (Academic Press) ; 14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 471-474) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Analytic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Analytic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Menge</subfield><subfield code="0">(DE-588)4142351-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Analytische Menge</subfield><subfield code="0">(DE-588)4142351-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028499827</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043075635 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:41Z |
institution | BVB |
isbn | 1281951854 9780123745644 9781281951854 9789810245054 9789812810342 981024505X 981281034X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028499827 |
oclc_num | 646775662 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 488 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | Abhyankar, Shreeram Shankar Verfasser aut Local analytic geometry Shreeram Shankar Abhyankar Singapore World Scientific ©2001 1 Online-Ressource (xv, 488 pages) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 14 Originally published: New York : Academic Press, ©1964, in series Pure and applied mathematics (Academic Press) ; 14 Includes bibliographical references (pages 471-474) and indexes This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively MATHEMATICS / Geometry / Analytic bisacsh Functional analysis fast Geometry, Analytic fast Geometry, Analytic Functional analysis Analytische Menge (DE-588)4142351-3 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Analytische Funktion (DE-588)4142348-3 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 s 1\p DE-604 Polynom (DE-588)4046711-9 s 2\p DE-604 Analytische Funktion (DE-588)4142348-3 s 3\p DE-604 Analytische Menge (DE-588)4142351-3 s 4\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Abhyankar, Shreeram Shankar Local analytic geometry MATHEMATICS / Geometry / Analytic bisacsh Functional analysis fast Geometry, Analytic fast Geometry, Analytic Functional analysis Analytische Menge (DE-588)4142351-3 gnd Analytische Geometrie (DE-588)4001867-2 gnd Polynom (DE-588)4046711-9 gnd Analytische Funktion (DE-588)4142348-3 gnd |
subject_GND | (DE-588)4142351-3 (DE-588)4001867-2 (DE-588)4046711-9 (DE-588)4142348-3 |
title | Local analytic geometry |
title_auth | Local analytic geometry |
title_exact_search | Local analytic geometry |
title_full | Local analytic geometry Shreeram Shankar Abhyankar |
title_fullStr | Local analytic geometry Shreeram Shankar Abhyankar |
title_full_unstemmed | Local analytic geometry Shreeram Shankar Abhyankar |
title_short | Local analytic geometry |
title_sort | local analytic geometry |
topic | MATHEMATICS / Geometry / Analytic bisacsh Functional analysis fast Geometry, Analytic fast Geometry, Analytic Functional analysis Analytische Menge (DE-588)4142351-3 gnd Analytische Geometrie (DE-588)4001867-2 gnd Polynom (DE-588)4046711-9 gnd Analytische Funktion (DE-588)4142348-3 gnd |
topic_facet | MATHEMATICS / Geometry / Analytic Functional analysis Geometry, Analytic Analytische Menge Analytische Geometrie Polynom Analytische Funktion |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235879 |
work_keys_str_mv | AT abhyankarshreeramshankar localanalyticgeometry |