Scale-isometric polytopal graphs in hypercubes and cubic lattices: polytopes in hypercubes and Zn̳
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
©2004
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | On t.p. "n̳" is subscript Includes bibliographical references (pages 163-169) and index Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph |
Beschreibung: | 1 Online-Ressource (ix, 175 pages) |
ISBN: | 1423708881 1860944213 1860945481 9781423708889 9781860945489 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043075401 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2004 |||| o||u| ||||||eng d | ||
020 | |a 1423708881 |9 1-4237-0888-1 | ||
020 | |a 1860944213 |9 1-86094-421-3 | ||
020 | |a 1860945481 |9 1-86094-548-1 | ||
020 | |a 9781423708889 |9 978-1-4237-0888-9 | ||
020 | |a 9781860945489 |9 978-1-86094-548-9 | ||
035 | |a (OCoLC)60690987 | ||
035 | |a (DE-599)BVBBV043075401 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511/.5 |2 22 | |
100 | 1 | |a Deza, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Scale-isometric polytopal graphs in hypercubes and cubic lattices |b polytopes in hypercubes and Zn̳ |c Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin |
264 | 1 | |a London |b Imperial College Press |c ©2004 | |
300 | |a 1 Online-Ressource (ix, 175 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a On t.p. "n̳" is subscript | ||
500 | |a Includes bibliographical references (pages 163-169) and index | ||
500 | |a Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives | ||
500 | |a This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph | ||
650 | 7 | |a MATHEMATICS / Graphic Methods |2 bisacsh | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Polytopes | |
650 | 4 | |a Metric spaces | |
650 | 4 | |a Embeddings (Mathematics) | |
650 | 0 | 7 | |a Polytop |0 (DE-588)4175324-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Polytop |0 (DE-588)4175324-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Grishukhin, Viatcheslav |e Sonstige |4 oth | |
700 | 1 | |a Shtogrin, Mikhail |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028499593 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175462523469824 |
---|---|
any_adam_object | |
author | Deza, M. |
author_facet | Deza, M. |
author_role | aut |
author_sort | Deza, M. |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043075401 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)60690987 (DE-599)BVBBV043075401 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03590nmm a2200589zc 4500</leader><controlfield tag="001">BV043075401</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423708881</subfield><subfield code="9">1-4237-0888-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860944213</subfield><subfield code="9">1-86094-421-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945481</subfield><subfield code="9">1-86094-548-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423708889</subfield><subfield code="9">978-1-4237-0888-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860945489</subfield><subfield code="9">978-1-86094-548-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60690987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043075401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deza, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scale-isometric polytopal graphs in hypercubes and cubic lattices</subfield><subfield code="b">polytopes in hypercubes and Zn̳</subfield><subfield code="c">Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">©2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 175 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">On t.p. "n̳" is subscript</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 163-169) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Graphic Methods</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polytopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embeddings (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polytop</subfield><subfield code="0">(DE-588)4175324-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polytop</subfield><subfield code="0">(DE-588)4175324-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grishukhin, Viatcheslav</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shtogrin, Mikhail</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028499593</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043075401 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:40Z |
institution | BVB |
isbn | 1423708881 1860944213 1860945481 9781423708889 9781860945489 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028499593 |
oclc_num | 60690987 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 175 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Imperial College Press |
record_format | marc |
spelling | Deza, M. Verfasser aut Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin London Imperial College Press ©2004 1 Online-Ressource (ix, 175 pages) txt rdacontent c rdamedia cr rdacarrier On t.p. "n̳" is subscript Includes bibliographical references (pages 163-169) and index Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph MATHEMATICS / Graphic Methods bisacsh Graph theory Polytopes Metric spaces Embeddings (Mathematics) Polytop (DE-588)4175324-0 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graphentheorie (DE-588)4113782-6 s 1\p DE-604 Polytop (DE-588)4175324-0 s 2\p DE-604 Grishukhin, Viatcheslav Sonstige oth Shtogrin, Mikhail Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Deza, M. Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ MATHEMATICS / Graphic Methods bisacsh Graph theory Polytopes Metric spaces Embeddings (Mathematics) Polytop (DE-588)4175324-0 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4175324-0 (DE-588)4113782-6 |
title | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ |
title_auth | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ |
title_exact_search | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ |
title_full | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin |
title_fullStr | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin |
title_full_unstemmed | Scale-isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and Zn̳ Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin |
title_short | Scale-isometric polytopal graphs in hypercubes and cubic lattices |
title_sort | scale isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and zn |
title_sub | polytopes in hypercubes and Zn̳ |
topic | MATHEMATICS / Graphic Methods bisacsh Graph theory Polytopes Metric spaces Embeddings (Mathematics) Polytop (DE-588)4175324-0 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | MATHEMATICS / Graphic Methods Graph theory Polytopes Metric spaces Embeddings (Mathematics) Polytop Graphentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=130045 |
work_keys_str_mv | AT dezam scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn AT grishukhinviatcheslav scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn AT shtogrinmikhail scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn |