Chemical sensors, Volume 2, Conductometric-type sensors: simulation and modeling
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
[New York, N.Y.] (222 East 46th Street, New York, NY 10017)
Momentum Press
2012
|
Schriftenreihe: | Sensor technology series
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Title from PDF t.p. (viewed Sept. 17, 2012) Includes bibliographical references and index Preface -- About the editor -- Contributors 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort ... [et al.] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg ... [et al.] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray ... [et al.] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei ... [et al.] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References Index This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more |
Beschreibung: | 1 Online-Ressource (xxiii, 486 p.) |
ISBN: | 1606503146 9781606503140 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043074534 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 1606503146 |c electronic bk. |9 1-60650-314-6 | ||
020 | |a 9781606503140 |c electronic bk. |9 978-1-60650-314-0 | ||
035 | |a (OCoLC)810787175 | ||
035 | |a (DE-599)BVBBV043074534 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 681.2 |2 22 | |
245 | 1 | 0 | |a Chemical sensors, Volume 2, Conductometric-type sensors |b simulation and modeling |c edited by Ghenadii Korotcenkov |
246 | 1 | 3 | |a Simulation and modeling |
246 | 1 | 3 | |a Conductometric-type sensors |
264 | 1 | |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) |b Momentum Press |c 2012 | |
300 | |a 1 Online-Ressource (xxiii, 486 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Sensor technology series | |
500 | |a Title from PDF t.p. (viewed Sept. 17, 2012) | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Preface -- About the editor -- Contributors | ||
500 | |a 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References | ||
500 | |a 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References | ||
500 | |a 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References | ||
500 | |a 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort ... [et al.] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References | ||
500 | |a 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References | ||
500 | |a 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References | ||
500 | |a 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg ... [et al.] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References | ||
500 | |a 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References | ||
500 | |a 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray ... [et al.] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References | ||
500 | |a 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References | ||
500 | |a 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei ... [et al.] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References | ||
500 | |a 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References | ||
500 | |a Index | ||
500 | |a This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Sensors |2 bisacsh | |
650 | 7 | |a Chemical detectors |2 local | |
650 | 7 | |a Nanostructured materials |2 local | |
650 | 4 | |a Chemical detectors | |
650 | 4 | |a Nanostructured materials | |
700 | 1 | |a Korotchenkov, G. S. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 1-60650-312-X |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-60650-312-6 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028498726 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175460918099968 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043074534 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)810787175 (DE-599)BVBBV043074534 |
dewey-full | 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.2 |
dewey-search | 681.2 |
dewey-sort | 3681.2 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07164nmm a2200649zc 4500</leader><controlfield tag="001">BV043074534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503146</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-60650-314-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503140</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-60650-314-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)810787175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043074534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical sensors, Volume 2, Conductometric-type sensors</subfield><subfield code="b">simulation and modeling</subfield><subfield code="c">edited by Ghenadii Korotcenkov</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Simulation and modeling</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Conductometric-type sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York, N.Y.] (222 East 46th Street, New York, NY 10017)</subfield><subfield code="b">Momentum Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 486 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Sensor technology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF t.p. (viewed Sept. 17, 2012)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- About the editor -- Contributors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort ... [et al.] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg ... [et al.] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray ... [et al.] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei ... [et al.] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemical detectors</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructured materials</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korotchenkov, G. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">1-60650-312-X</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-60650-312-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028498726</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043074534 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:39Z |
institution | BVB |
isbn | 1606503146 9781606503140 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028498726 |
oclc_num | 810787175 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxiii, 486 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Momentum Press |
record_format | marc |
series2 | Sensor technology series |
spelling | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling edited by Ghenadii Korotcenkov Simulation and modeling Conductometric-type sensors [New York, N.Y.] (222 East 46th Street, New York, NY 10017) Momentum Press 2012 1 Online-Ressource (xxiii, 486 p.) txt rdacontent c rdamedia cr rdacarrier Sensor technology series Title from PDF t.p. (viewed Sept. 17, 2012) Includes bibliographical references and index Preface -- About the editor -- Contributors 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort ... [et al.] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg ... [et al.] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray ... [et al.] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei ... [et al.] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References Index This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors local Nanostructured materials local Chemical detectors Nanostructured materials Korotchenkov, G. S. Sonstige oth Erscheint auch als Druckausgabe 1-60650-312-X Erscheint auch als Druckausgabe 978-1-60650-312-6 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150 Aggregator Volltext |
spellingShingle | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors local Nanostructured materials local Chemical detectors Nanostructured materials |
title | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling |
title_alt | Simulation and modeling Conductometric-type sensors |
title_auth | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling |
title_exact_search | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling |
title_full | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling edited by Ghenadii Korotcenkov |
title_fullStr | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling edited by Ghenadii Korotcenkov |
title_full_unstemmed | Chemical sensors, Volume 2, Conductometric-type sensors simulation and modeling edited by Ghenadii Korotcenkov |
title_short | Chemical sensors, Volume 2, Conductometric-type sensors |
title_sort | chemical sensors volume 2 conductometric type sensors simulation and modeling |
title_sub | simulation and modeling |
topic | TECHNOLOGY & ENGINEERING / Sensors bisacsh Chemical detectors local Nanostructured materials local Chemical detectors Nanostructured materials |
topic_facet | TECHNOLOGY & ENGINEERING / Sensors Chemical detectors Nanostructured materials |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=501150 |
work_keys_str_mv | AT korotchenkovgs chemicalsensorsvolume2conductometrictypesensorssimulationandmodeling AT korotchenkovgs simulationandmodeling AT korotchenkovgs conductometrictypesensors |