Knots and Physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 5. topology: mirror images, tangles and continued fractions Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface to the Fourth Edition; Table of Contents; Part I.A Short Course of Knots and Physics; 1. Physical Knots; 2. Diagrams and Moves; 3. States and the Bracket Polynomial; 4. Alternating Links and Checkerboard Surfaces; 5. The Jones Polynomial and its Generalizations; 6. An Oriented State Model for VK(t); 7. Braids and the Jones Polynomial; 8. Abstract Tensors and the Yang-Baxter Equation; 9. Formal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group S L(2}q 10. The Form of the Universal R-matrix11. Yang-Baxter Models for Specializations of the Homfly Polynomial; 12. The Alexander Polynomial.; 13. Knot-Crystals -- Classical Knot Theory in a Modern Guise; 14. The Kauffman Polynomial; 15. Oriented Models and Piecewise Linear Models; 16. Three Manifold Invariants from the Jones Polynomial; 17. Integral Heuristics and Witten's Invariants; 18. Appendix -- Solutions to the Yang-Baxter Equation; Part II. Knots and Physics -- Miscellany; 1. Theory of Hitches; 2. The Rubber Band and Twisted 1\1be; 3. On a Crossing.; 4. Slide Equivalence 5. Unoriented Diagrams and Linking Numbers6. The Penrose Chromatic Recursion; 7. The Chromatic Polynomial; 8. The Potts Model and the Dichromatic Polynomial; 9. Preliminaries for Quantum Mechanics, Spin Networks and Angular Momentum; 10. Quaternions, Cayley Numbers and the Belt Trick; 11. The Quaternion Demonstrator; 12. The Penrose Theory of Spin Networks; 13. Q-Spin Networks and the Magic Weave.; 14. Knots and Strings -Knotted Strings; 15. DNA and Quantum Field Theory; 16. Knots in Dynamical Systems -- The Lorenz Attractor ... . 501 Coda; References; Appendix IntroductionGauss Codes, Quantum Groups and Ribbon Hopf Algebras; I. Introduction; II. Knots and the Gauss Code; III. Jordan Curves and Immersed Plane Curves; IV. The Abstract Tensor Model for Link Invariants; V. From Abstract Tensors to Quantum Algebras; VI. From Quantum Algebra to Quantum Groups; VII. Categories; VIII. Invariants of 3-Manifolds; IX. Epilogue; References; Spin Networks, Topology and Discrete Physics; I. Introduction; II. Trees and Four Colors; III. The Temperley Lieb Algebra; IV. Temperley Lieb Recoupling Theory; V. Penrose Spin Networks; VI. Knots and 3-Manifolds VII. The Shadow WorldVIII. The Invariants of Ooguri, Crane and Yetter; References; Link Polynomials and a Graphical Calculus (with P. Vogel}; 0. Introduction; 1. Rigid Vertex Isotopy; 2. The Homfty Polynomial; 3. Braids and the Heeke Algebra; 4. Demonstration of Identities in Oriented Graphical Calculus; 5. The Dubrovnik Polynomial; REFERENCES; Knots, Tangles, and Electrical Networks (with J.R. Goldman); CONTENTS; 1. INTRODUCTION; 2. KNOTS, TANGLES, AND GRAPHS; 3. CLASSICAL ELECTRICITY; 4. MODERN ELECTRICITY-THE CONDUCTANCE INVARIANT. This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes a |
Beschreibung: | 1 Online-Ressource (865 pages) |
ISBN: | 9789814383028 9814383023 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043074005 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789814383028 |c electronic bk. |9 978-981-4383-02-8 | ||
020 | |a 9814383023 |c electronic bk. |9 981-4383-02-3 | ||
035 | |a (OCoLC)840254732 | ||
035 | |a (DE-599)BVBBV043074005 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514.2242 | |
082 | 0 | |a 514/.224 | |
082 | 0 | |a 514 | |
100 | 1 | |a Kauffman, Louis H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Knots and Physics |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c 2012 | |
300 | |a 1 Online-Ressource (865 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 5. topology: mirror images, tangles and continued fractions | ||
500 | |a Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface to the Fourth Edition; Table of Contents; Part I.A Short Course of Knots and Physics; 1. Physical Knots; 2. Diagrams and Moves; 3. States and the Bracket Polynomial; 4. Alternating Links and Checkerboard Surfaces; 5. The Jones Polynomial and its Generalizations; 6. An Oriented State Model for VK(t); 7. Braids and the Jones Polynomial; 8. Abstract Tensors and the Yang-Baxter Equation; 9. Formal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group S L(2}q | ||
500 | |a 10. The Form of the Universal R-matrix11. Yang-Baxter Models for Specializations of the Homfly Polynomial; 12. The Alexander Polynomial.; 13. Knot-Crystals -- Classical Knot Theory in a Modern Guise; 14. The Kauffman Polynomial; 15. Oriented Models and Piecewise Linear Models; 16. Three Manifold Invariants from the Jones Polynomial; 17. Integral Heuristics and Witten's Invariants; 18. Appendix -- Solutions to the Yang-Baxter Equation; Part II. Knots and Physics -- Miscellany; 1. Theory of Hitches; 2. The Rubber Band and Twisted 1\1be; 3. On a Crossing.; 4. Slide Equivalence | ||
500 | |a 5. Unoriented Diagrams and Linking Numbers6. The Penrose Chromatic Recursion; 7. The Chromatic Polynomial; 8. The Potts Model and the Dichromatic Polynomial; 9. Preliminaries for Quantum Mechanics, Spin Networks and Angular Momentum; 10. Quaternions, Cayley Numbers and the Belt Trick; 11. The Quaternion Demonstrator; 12. The Penrose Theory of Spin Networks; 13. Q-Spin Networks and the Magic Weave.; 14. Knots and Strings -Knotted Strings; 15. DNA and Quantum Field Theory; 16. Knots in Dynamical Systems -- The Lorenz Attractor ... . 501 Coda; References; Appendix | ||
500 | |a IntroductionGauss Codes, Quantum Groups and Ribbon Hopf Algebras; I. Introduction; II. Knots and the Gauss Code; III. Jordan Curves and Immersed Plane Curves; IV. The Abstract Tensor Model for Link Invariants; V. From Abstract Tensors to Quantum Algebras; VI. From Quantum Algebra to Quantum Groups; VII. Categories; VIII. Invariants of 3-Manifolds; IX. Epilogue; References; Spin Networks, Topology and Discrete Physics; I. Introduction; II. Trees and Four Colors; III. The Temperley Lieb Algebra; IV. Temperley Lieb Recoupling Theory; V. Penrose Spin Networks; VI. Knots and 3-Manifolds | ||
500 | |a VII. The Shadow WorldVIII. The Invariants of Ooguri, Crane and Yetter; References; Link Polynomials and a Graphical Calculus (with P. Vogel}; 0. Introduction; 1. Rigid Vertex Isotopy; 2. The Homfty Polynomial; 3. Braids and the Heeke Algebra; 4. Demonstration of Identities in Oriented Graphical Calculus; 5. The Dubrovnik Polynomial; REFERENCES; Knots, Tangles, and Electrical Networks (with J.R. Goldman); CONTENTS; 1. INTRODUCTION; 2. KNOTS, TANGLES, AND GRAPHS; 3. CLASSICAL ELECTRICITY; 4. MODERN ELECTRICITY-THE CONDUCTANCE INVARIANT. | ||
500 | |a This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes a | ||
650 | 4 | |a Knot theory / Congresses | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Knot polynomials | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 0 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028498197 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175459940827136 |
---|---|
any_adam_object | |
author | Kauffman, Louis H. |
author_facet | Kauffman, Louis H. |
author_role | aut |
author_sort | Kauffman, Louis H. |
author_variant | l h k lh lhk |
building | Verbundindex |
bvnumber | BV043074005 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)840254732 (DE-599)BVBBV043074005 |
dewey-full | 514.2242 514/.224 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2242 514/.224 514 |
dewey-search | 514.2242 514/.224 514 |
dewey-sort | 3514.2242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05461nmm a2200625zc 4500</leader><controlfield tag="001">BV043074005</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383028</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4383-02-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383023</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4383-02-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)840254732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043074005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2242</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kauffman, Louis H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knots and Physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (865 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. topology: mirror images, tangles and continued fractions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface to the Fourth Edition; Table of Contents; Part I.A Short Course of Knots and Physics; 1. Physical Knots; 2. Diagrams and Moves; 3. States and the Bracket Polynomial; 4. Alternating Links and Checkerboard Surfaces; 5. The Jones Polynomial and its Generalizations; 6. An Oriented State Model for VK(t); 7. Braids and the Jones Polynomial; 8. Abstract Tensors and the Yang-Baxter Equation; 9. Formal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group S L(2}q</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">10. The Form of the Universal R-matrix11. Yang-Baxter Models for Specializations of the Homfly Polynomial; 12. The Alexander Polynomial.; 13. Knot-Crystals -- Classical Knot Theory in a Modern Guise; 14. The Kauffman Polynomial; 15. Oriented Models and Piecewise Linear Models; 16. Three Manifold Invariants from the Jones Polynomial; 17. Integral Heuristics and Witten's Invariants; 18. Appendix -- Solutions to the Yang-Baxter Equation; Part II. Knots and Physics -- Miscellany; 1. Theory of Hitches; 2. The Rubber Band and Twisted 1\1be; 3. On a Crossing.; 4. Slide Equivalence</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. Unoriented Diagrams and Linking Numbers6. The Penrose Chromatic Recursion; 7. The Chromatic Polynomial; 8. The Potts Model and the Dichromatic Polynomial; 9. Preliminaries for Quantum Mechanics, Spin Networks and Angular Momentum; 10. Quaternions, Cayley Numbers and the Belt Trick; 11. The Quaternion Demonstrator; 12. The Penrose Theory of Spin Networks; 13. Q-Spin Networks and the Magic Weave.; 14. Knots and Strings -Knotted Strings; 15. DNA and Quantum Field Theory; 16. Knots in Dynamical Systems -- The Lorenz Attractor ... . 501 Coda; References; Appendix</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">IntroductionGauss Codes, Quantum Groups and Ribbon Hopf Algebras; I. Introduction; II. Knots and the Gauss Code; III. Jordan Curves and Immersed Plane Curves; IV. The Abstract Tensor Model for Link Invariants; V. From Abstract Tensors to Quantum Algebras; VI. From Quantum Algebra to Quantum Groups; VII. Categories; VIII. Invariants of 3-Manifolds; IX. Epilogue; References; Spin Networks, Topology and Discrete Physics; I. Introduction; II. Trees and Four Colors; III. The Temperley Lieb Algebra; IV. Temperley Lieb Recoupling Theory; V. Penrose Spin Networks; VI. Knots and 3-Manifolds</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">VII. The Shadow WorldVIII. The Invariants of Ooguri, Crane and Yetter; References; Link Polynomials and a Graphical Calculus (with P. Vogel}; 0. Introduction; 1. Rigid Vertex Isotopy; 2. The Homfty Polynomial; 3. Braids and the Heeke Algebra; 4. Demonstration of Identities in Oriented Graphical Calculus; 5. The Dubrovnik Polynomial; REFERENCES; Knots, Tangles, and Electrical Networks (with J.R. Goldman); CONTENTS; 1. INTRODUCTION; 2. KNOTS, TANGLES, AND GRAPHS; 3. CLASSICAL ELECTRICITY; 4. MODERN ELECTRICITY-THE CONDUCTANCE INVARIANT.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028498197</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043074005 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:38Z |
institution | BVB |
isbn | 9789814383028 9814383023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028498197 |
oclc_num | 840254732 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (865 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Kauffman, Louis H. Verfasser aut Knots and Physics Singapore World Scientific Pub. Co. 2012 1 Online-Ressource (865 pages) txt rdacontent c rdamedia cr rdacarrier 5. topology: mirror images, tangles and continued fractions Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface to the Fourth Edition; Table of Contents; Part I.A Short Course of Knots and Physics; 1. Physical Knots; 2. Diagrams and Moves; 3. States and the Bracket Polynomial; 4. Alternating Links and Checkerboard Surfaces; 5. The Jones Polynomial and its Generalizations; 6. An Oriented State Model for VK(t); 7. Braids and the Jones Polynomial; 8. Abstract Tensors and the Yang-Baxter Equation; 9. Formal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group S L(2}q 10. The Form of the Universal R-matrix11. Yang-Baxter Models for Specializations of the Homfly Polynomial; 12. The Alexander Polynomial.; 13. Knot-Crystals -- Classical Knot Theory in a Modern Guise; 14. The Kauffman Polynomial; 15. Oriented Models and Piecewise Linear Models; 16. Three Manifold Invariants from the Jones Polynomial; 17. Integral Heuristics and Witten's Invariants; 18. Appendix -- Solutions to the Yang-Baxter Equation; Part II. Knots and Physics -- Miscellany; 1. Theory of Hitches; 2. The Rubber Band and Twisted 1\1be; 3. On a Crossing.; 4. Slide Equivalence 5. Unoriented Diagrams and Linking Numbers6. The Penrose Chromatic Recursion; 7. The Chromatic Polynomial; 8. The Potts Model and the Dichromatic Polynomial; 9. Preliminaries for Quantum Mechanics, Spin Networks and Angular Momentum; 10. Quaternions, Cayley Numbers and the Belt Trick; 11. The Quaternion Demonstrator; 12. The Penrose Theory of Spin Networks; 13. Q-Spin Networks and the Magic Weave.; 14. Knots and Strings -Knotted Strings; 15. DNA and Quantum Field Theory; 16. Knots in Dynamical Systems -- The Lorenz Attractor ... . 501 Coda; References; Appendix IntroductionGauss Codes, Quantum Groups and Ribbon Hopf Algebras; I. Introduction; II. Knots and the Gauss Code; III. Jordan Curves and Immersed Plane Curves; IV. The Abstract Tensor Model for Link Invariants; V. From Abstract Tensors to Quantum Algebras; VI. From Quantum Algebra to Quantum Groups; VII. Categories; VIII. Invariants of 3-Manifolds; IX. Epilogue; References; Spin Networks, Topology and Discrete Physics; I. Introduction; II. Trees and Four Colors; III. The Temperley Lieb Algebra; IV. Temperley Lieb Recoupling Theory; V. Penrose Spin Networks; VI. Knots and 3-Manifolds VII. The Shadow WorldVIII. The Invariants of Ooguri, Crane and Yetter; References; Link Polynomials and a Graphical Calculus (with P. Vogel}; 0. Introduction; 1. Rigid Vertex Isotopy; 2. The Homfty Polynomial; 3. Braids and the Heeke Algebra; 4. Demonstration of Identities in Oriented Graphical Calculus; 5. The Dubrovnik Polynomial; REFERENCES; Knots, Tangles, and Electrical Networks (with J.R. Goldman); CONTENTS; 1. INTRODUCTION; 2. KNOTS, TANGLES, AND GRAPHS; 3. CLASSICAL ELECTRICITY; 4. MODERN ELECTRICITY-THE CONDUCTANCE INVARIANT. This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes a Knot theory / Congresses MATHEMATICS / Topology bisacsh Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Knotentheorie (DE-588)4164318-5 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Knoten Mathematik (DE-588)4164314-8 s Physik (DE-588)4045956-1 s 1\p DE-604 Knotentheorie (DE-588)4164318-5 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kauffman, Louis H. Knots and Physics Knot theory / Congresses MATHEMATICS / Topology bisacsh Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd Knotentheorie (DE-588)4164318-5 gnd Physik (DE-588)4045956-1 gnd |
subject_GND | (DE-588)4164314-8 (DE-588)4164318-5 (DE-588)4045956-1 (DE-588)1071861417 |
title | Knots and Physics |
title_auth | Knots and Physics |
title_exact_search | Knots and Physics |
title_full | Knots and Physics |
title_fullStr | Knots and Physics |
title_full_unstemmed | Knots and Physics |
title_short | Knots and Physics |
title_sort | knots and physics |
topic | Knot theory / Congresses MATHEMATICS / Topology bisacsh Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd Knotentheorie (DE-588)4164318-5 gnd Physik (DE-588)4045956-1 gnd |
topic_facet | Knot theory / Congresses MATHEMATICS / Topology Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik Knotentheorie Physik Konferenzschrift |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533873 |
work_keys_str_mv | AT kauffmanlouish knotsandphysics |