Matrix completions, moments, and sums of hermitian squares:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
©2011
|
Schriftenreihe: | Princeton series in applied mathematics
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 475-512) and indexes Cover -- Contents -- Preface -- Chapter 1. Cones of Hermitian matrices and trigonometric polynomials -- 1.1 Cones and their basic properties -- 1.2 Cones of Hermitian matrices -- 1.3 Cones of trigonometric polynomials -- 1.4 Determinant and entropy maximization -- 1.5 Semidefinite programming -- 1.6 Exercises -- 1.7 Notes -- Chapter 2. Completions of positive semidefinite operator matrices -- 2.1 Positive definite completions: the banded case -- 2.2 Positive definite completions: the chordal case -- 2.3 Positive definite completions: the Toeplitz case -- 2.4 The Schur complement and Fej233;r-Riesz factorization -- 2.5 Schur parameters -- 2.6 The central completion, maximum entropy, and inheritance principle -- 2.7 The Hamburger moment problem and spectral factorization on the real line -- 2.8 Linear prediction -- 2.9 Exercises -- 2.10 Notes -- Chapter 3. Multivariable moments and sums of Hermitian squares -- 3.1 Positive Carath233;odory interpolation on the polydisk -- - 3.2 Inverses of multivariable Toeplitz matrices and Christoffel-Darboux formulas -- 3.3 Two-variable moment problem for Bernstein-Szeg246; measures -- 3.4 Fej233;r-Riesz factorization and sums of Hermitian squares -- 3.5 Completion problems for positive semidefinite functions on amenable groups -- 3.6 Moment problems on free groups -- 3.7 Noncommutative factorization -- 3.8 Two-variable Hamburger moment problem -- 3.9 Bochners theorem and an application to autoregressive stochastic processes -- 3.10 Exercises -- 3.11 Notes -- Chapter 4. Contractive analogs -- 4.1 Contractive operator-matrix completions -- 4.2 Linearly constrained completion problems -- 4.3 The operator-valued Nehari and Carath233;odory problems -- 4.4 Neharis problem in two variables -- 4.5 Nehari and Carath233;odory problems for functions on compact groups -- 4.6 The Nevanlinna-Pick problem -- 4.7 The operator Corona problem -- 4.8 Joint operator/Hilbert-Schmidt norm control extensions -- - 4.9 An L[sup()] extension problem for polynomials -- 4.10 Superoptimal completions -- 4.11 Superoptimal approximations of analytic functions -- 4.12 Model matching -- 4.13 Exercises -- 4.14 Notes -- Chapter 5. Hermitian and related completion problems -- 5.1 Hermitian completions -- 5.2 Ranks of completions -- 5.3 Minimal negative and positive signature -- 5.4 Inertia of Hermitian matrix expressions -- 5.5 Bounds for eigenvalues of Hermitian completions -- 5.6 Bounds for singular values of completions of partial triangular matrices -- 5.7 Moment problems for real measures on the unit circle -- 5.8 Euclidean distance matrix completions -- 5.9 Normal completions -- 5.10 Application to minimal representation of discrete systems -- 5.11 The separability problem in quantum information -- 5.12 Exercises -- 5.13 Notes -- Bibliography -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Notation Index Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines |
Beschreibung: | 1 Online-Ressource (xii, 518 pages) |
ISBN: | 0691128898 1400840597 9780691128894 9781400840595 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043073259 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 0691128898 |9 0-691-12889-8 | ||
020 | |a 1400840597 |c electronic bk. |9 1-4008-4059-7 | ||
020 | |a 9780691128894 |9 978-0-691-12889-4 | ||
020 | |a 9781400840595 |c electronic bk. |9 978-1-4008-4059-5 | ||
035 | |a (OCoLC)732028359 | ||
035 | |a (DE-599)BVBBV043073259 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.9434 |2 23 | |
100 | 1 | |a Bakonyi, M., (Mihály) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Matrix completions, moments, and sums of hermitian squares |c Mihály Bakonyi and Hugo J. Woerdeman |
264 | 1 | |a Princeton |b Princeton University Press |c ©2011 | |
300 | |a 1 Online-Ressource (xii, 518 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton series in applied mathematics | |
500 | |a Includes bibliographical references (pages 475-512) and indexes | ||
500 | |a Cover -- Contents -- Preface -- Chapter 1. Cones of Hermitian matrices and trigonometric polynomials -- 1.1 Cones and their basic properties -- 1.2 Cones of Hermitian matrices -- 1.3 Cones of trigonometric polynomials -- 1.4 Determinant and entropy maximization -- 1.5 Semidefinite programming -- 1.6 Exercises -- 1.7 Notes -- Chapter 2. Completions of positive semidefinite operator matrices -- 2.1 Positive definite completions: the banded case -- 2.2 Positive definite completions: the chordal case -- 2.3 Positive definite completions: the Toeplitz case -- 2.4 The Schur complement and Fej233;r-Riesz factorization -- 2.5 Schur parameters -- 2.6 The central completion, maximum entropy, and inheritance principle -- 2.7 The Hamburger moment problem and spectral factorization on the real line -- 2.8 Linear prediction -- 2.9 Exercises -- 2.10 Notes -- Chapter 3. Multivariable moments and sums of Hermitian squares -- 3.1 Positive Carath233;odory interpolation on the polydisk -- | ||
500 | |a - 3.2 Inverses of multivariable Toeplitz matrices and Christoffel-Darboux formulas -- 3.3 Two-variable moment problem for Bernstein-Szeg246; measures -- 3.4 Fej233;r-Riesz factorization and sums of Hermitian squares -- 3.5 Completion problems for positive semidefinite functions on amenable groups -- 3.6 Moment problems on free groups -- 3.7 Noncommutative factorization -- 3.8 Two-variable Hamburger moment problem -- 3.9 Bochners theorem and an application to autoregressive stochastic processes -- 3.10 Exercises -- 3.11 Notes -- Chapter 4. Contractive analogs -- 4.1 Contractive operator-matrix completions -- 4.2 Linearly constrained completion problems -- 4.3 The operator-valued Nehari and Carath233;odory problems -- 4.4 Neharis problem in two variables -- 4.5 Nehari and Carath233;odory problems for functions on compact groups -- 4.6 The Nevanlinna-Pick problem -- 4.7 The operator Corona problem -- 4.8 Joint operator/Hilbert-Schmidt norm control extensions -- | ||
500 | |a - 4.9 An L[sup()] extension problem for polynomials -- 4.10 Superoptimal completions -- 4.11 Superoptimal approximations of analytic functions -- 4.12 Model matching -- 4.13 Exercises -- 4.14 Notes -- Chapter 5. Hermitian and related completion problems -- 5.1 Hermitian completions -- 5.2 Ranks of completions -- 5.3 Minimal negative and positive signature -- 5.4 Inertia of Hermitian matrix expressions -- 5.5 Bounds for eigenvalues of Hermitian completions -- 5.6 Bounds for singular values of completions of partial triangular matrices -- 5.7 Moment problems for real measures on the unit circle -- 5.8 Euclidean distance matrix completions -- 5.9 Normal completions -- 5.10 Application to minimal representation of discrete systems -- 5.11 The separability problem in quantum information -- 5.12 Exercises -- 5.13 Notes -- Bibliography -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Notation Index | ||
500 | |a Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines | ||
650 | 4 | |a Matrices | |
650 | 4 | |a Hermitian forms | |
650 | 4 | |a Algebras, Linear | |
650 | 7 | |a MATHEMATICS / Matrices |2 bisacsh | |
650 | 7 | |a Algebras, Linear |2 fast | |
650 | 7 | |a Hermitian forms |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 4 | |a Algebras, Linear | |
650 | 4 | |a Hermitian forms | |
650 | 4 | |a Matrices | |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Woerdeman, Hugo J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028497451 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175458510569472 |
---|---|
any_adam_object | |
author | Bakonyi, M., (Mihály) |
author_facet | Bakonyi, M., (Mihály) |
author_role | aut |
author_sort | Bakonyi, M., (Mihály) |
author_variant | m m b mm mmb |
building | Verbundindex |
bvnumber | BV043073259 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)732028359 (DE-599)BVBBV043073259 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06507nmm a2200601zc 4500</leader><controlfield tag="001">BV043073259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691128898</subfield><subfield code="9">0-691-12889-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400840597</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4059-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691128894</subfield><subfield code="9">978-0-691-12889-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400840595</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4059-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)732028359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043073259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bakonyi, M., (Mihály)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix completions, moments, and sums of hermitian squares</subfield><subfield code="c">Mihály Bakonyi and Hugo J. Woerdeman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 518 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 475-512) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Contents -- Preface -- Chapter 1. Cones of Hermitian matrices and trigonometric polynomials -- 1.1 Cones and their basic properties -- 1.2 Cones of Hermitian matrices -- 1.3 Cones of trigonometric polynomials -- 1.4 Determinant and entropy maximization -- 1.5 Semidefinite programming -- 1.6 Exercises -- 1.7 Notes -- Chapter 2. Completions of positive semidefinite operator matrices -- 2.1 Positive definite completions: the banded case -- 2.2 Positive definite completions: the chordal case -- 2.3 Positive definite completions: the Toeplitz case -- 2.4 The Schur complement and Fej233;r-Riesz factorization -- 2.5 Schur parameters -- 2.6 The central completion, maximum entropy, and inheritance principle -- 2.7 The Hamburger moment problem and spectral factorization on the real line -- 2.8 Linear prediction -- 2.9 Exercises -- 2.10 Notes -- Chapter 3. Multivariable moments and sums of Hermitian squares -- 3.1 Positive Carath233;odory interpolation on the polydisk -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.2 Inverses of multivariable Toeplitz matrices and Christoffel-Darboux formulas -- 3.3 Two-variable moment problem for Bernstein-Szeg246; measures -- 3.4 Fej233;r-Riesz factorization and sums of Hermitian squares -- 3.5 Completion problems for positive semidefinite functions on amenable groups -- 3.6 Moment problems on free groups -- 3.7 Noncommutative factorization -- 3.8 Two-variable Hamburger moment problem -- 3.9 Bochners theorem and an application to autoregressive stochastic processes -- 3.10 Exercises -- 3.11 Notes -- Chapter 4. Contractive analogs -- 4.1 Contractive operator-matrix completions -- 4.2 Linearly constrained completion problems -- 4.3 The operator-valued Nehari and Carath233;odory problems -- 4.4 Neharis problem in two variables -- 4.5 Nehari and Carath233;odory problems for functions on compact groups -- 4.6 The Nevanlinna-Pick problem -- 4.7 The operator Corona problem -- 4.8 Joint operator/Hilbert-Schmidt norm control extensions -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4.9 An L[sup()] extension problem for polynomials -- 4.10 Superoptimal completions -- 4.11 Superoptimal approximations of analytic functions -- 4.12 Model matching -- 4.13 Exercises -- 4.14 Notes -- Chapter 5. Hermitian and related completion problems -- 5.1 Hermitian completions -- 5.2 Ranks of completions -- 5.3 Minimal negative and positive signature -- 5.4 Inertia of Hermitian matrix expressions -- 5.5 Bounds for eigenvalues of Hermitian completions -- 5.6 Bounds for singular values of completions of partial triangular matrices -- 5.7 Moment problems for real measures on the unit circle -- 5.8 Euclidean distance matrix completions -- 5.9 Normal completions -- 5.10 Application to minimal representation of discrete systems -- 5.11 The separability problem in quantum information -- 5.12 Exercises -- 5.13 Notes -- Bibliography -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Notation Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermitian forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Matrices</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebras, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hermitian forms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermitian forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woerdeman, Hugo J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028497451</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043073259 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:37Z |
institution | BVB |
isbn | 0691128898 1400840597 9780691128894 9781400840595 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028497451 |
oclc_num | 732028359 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 518 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton series in applied mathematics |
spelling | Bakonyi, M., (Mihály) Verfasser aut Matrix completions, moments, and sums of hermitian squares Mihály Bakonyi and Hugo J. Woerdeman Princeton Princeton University Press ©2011 1 Online-Ressource (xii, 518 pages) txt rdacontent c rdamedia cr rdacarrier Princeton series in applied mathematics Includes bibliographical references (pages 475-512) and indexes Cover -- Contents -- Preface -- Chapter 1. Cones of Hermitian matrices and trigonometric polynomials -- 1.1 Cones and their basic properties -- 1.2 Cones of Hermitian matrices -- 1.3 Cones of trigonometric polynomials -- 1.4 Determinant and entropy maximization -- 1.5 Semidefinite programming -- 1.6 Exercises -- 1.7 Notes -- Chapter 2. Completions of positive semidefinite operator matrices -- 2.1 Positive definite completions: the banded case -- 2.2 Positive definite completions: the chordal case -- 2.3 Positive definite completions: the Toeplitz case -- 2.4 The Schur complement and Fej233;r-Riesz factorization -- 2.5 Schur parameters -- 2.6 The central completion, maximum entropy, and inheritance principle -- 2.7 The Hamburger moment problem and spectral factorization on the real line -- 2.8 Linear prediction -- 2.9 Exercises -- 2.10 Notes -- Chapter 3. Multivariable moments and sums of Hermitian squares -- 3.1 Positive Carath233;odory interpolation on the polydisk -- - 3.2 Inverses of multivariable Toeplitz matrices and Christoffel-Darboux formulas -- 3.3 Two-variable moment problem for Bernstein-Szeg246; measures -- 3.4 Fej233;r-Riesz factorization and sums of Hermitian squares -- 3.5 Completion problems for positive semidefinite functions on amenable groups -- 3.6 Moment problems on free groups -- 3.7 Noncommutative factorization -- 3.8 Two-variable Hamburger moment problem -- 3.9 Bochners theorem and an application to autoregressive stochastic processes -- 3.10 Exercises -- 3.11 Notes -- Chapter 4. Contractive analogs -- 4.1 Contractive operator-matrix completions -- 4.2 Linearly constrained completion problems -- 4.3 The operator-valued Nehari and Carath233;odory problems -- 4.4 Neharis problem in two variables -- 4.5 Nehari and Carath233;odory problems for functions on compact groups -- 4.6 The Nevanlinna-Pick problem -- 4.7 The operator Corona problem -- 4.8 Joint operator/Hilbert-Schmidt norm control extensions -- - 4.9 An L[sup()] extension problem for polynomials -- 4.10 Superoptimal completions -- 4.11 Superoptimal approximations of analytic functions -- 4.12 Model matching -- 4.13 Exercises -- 4.14 Notes -- Chapter 5. Hermitian and related completion problems -- 5.1 Hermitian completions -- 5.2 Ranks of completions -- 5.3 Minimal negative and positive signature -- 5.4 Inertia of Hermitian matrix expressions -- 5.5 Bounds for eigenvalues of Hermitian completions -- 5.6 Bounds for singular values of completions of partial triangular matrices -- 5.7 Moment problems for real measures on the unit circle -- 5.8 Euclidean distance matrix completions -- 5.9 Normal completions -- 5.10 Application to minimal representation of discrete systems -- 5.11 The separability problem in quantum information -- 5.12 Exercises -- 5.13 Notes -- Bibliography -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Notation Index Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines Matrices Hermitian forms Algebras, Linear MATHEMATICS / Matrices bisacsh Algebras, Linear fast Hermitian forms fast Matrices fast Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 s 1\p DE-604 Woerdeman, Hugo J. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bakonyi, M., (Mihály) Matrix completions, moments, and sums of hermitian squares Matrices Hermitian forms Algebras, Linear MATHEMATICS / Matrices bisacsh Algebras, Linear fast Hermitian forms fast Matrices fast Matrizenrechnung (DE-588)4126963-9 gnd |
subject_GND | (DE-588)4126963-9 |
title | Matrix completions, moments, and sums of hermitian squares |
title_auth | Matrix completions, moments, and sums of hermitian squares |
title_exact_search | Matrix completions, moments, and sums of hermitian squares |
title_full | Matrix completions, moments, and sums of hermitian squares Mihály Bakonyi and Hugo J. Woerdeman |
title_fullStr | Matrix completions, moments, and sums of hermitian squares Mihály Bakonyi and Hugo J. Woerdeman |
title_full_unstemmed | Matrix completions, moments, and sums of hermitian squares Mihály Bakonyi and Hugo J. Woerdeman |
title_short | Matrix completions, moments, and sums of hermitian squares |
title_sort | matrix completions moments and sums of hermitian squares |
topic | Matrices Hermitian forms Algebras, Linear MATHEMATICS / Matrices bisacsh Algebras, Linear fast Hermitian forms fast Matrices fast Matrizenrechnung (DE-588)4126963-9 gnd |
topic_facet | Matrices Hermitian forms Algebras, Linear MATHEMATICS / Matrices Matrizenrechnung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=366496 |
work_keys_str_mv | AT bakonyimmihaly matrixcompletionsmomentsandsumsofhermitiansquares AT woerdemanhugoj matrixcompletionsmomentsandsumsofhermitiansquares |