Spectral asymptotics in the semi-classical limit:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K.
Cambridge University Press
1999
|
Schriftenreihe: | London Mathematical Society lecture note series
268 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. [209]-220) and index Local symplectic geometry -- - The WKB-method -- - The WKB-method for a potential minimum -- - Self-adjoint operators -- - The method of stationary phase -- - Tunnel effect and interaction matrix -- - @h-pseudodifferential operators -- - Functional calculus for pseudodifferential operators -- - Trace class operators and applications of the functional calculus -- - More precise spectral asymptotics for non-critical Hamiltonians -- - Improvement when the periodic trajectories form a set of measure 0 -- - A more general study of the trace -- - Spectral theory for perturbed periodic problems -- - Normal forms for some scalar pseudodifferential operators -- - Spectrum of operators with periodic bicharacteristics |
Beschreibung: | 1 Online-Ressource (xi, 227 p.) |
ISBN: | 051166219X 0521665442 1107362792 9780511662195 9780521665445 9781107362796 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043070863 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1999 |||| o||u| ||||||eng d | ||
020 | |a 051166219X |c ebook |9 0-511-66219-X | ||
020 | |a 0521665442 |9 0-521-66544-2 | ||
020 | |a 1107362792 |c electronic bk. |9 1-107-36279-2 | ||
020 | |a 9780511662195 |c ebook |9 978-0-511-66219-5 | ||
020 | |a 9780521665445 |9 978-0-521-66544-5 | ||
020 | |a 9781107362796 |c electronic bk. |9 978-1-107-36279-6 | ||
035 | |a (OCoLC)836871651 | ||
035 | |a (DE-599)BVBBV043070863 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.15/57222 |2 22 | |
100 | 1 | |a Dimassi, Mouez |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral asymptotics in the semi-classical limit |c Mouez Dimassi, Johannes Sjöstrand |
264 | 1 | |a Cambridge, U.K. |b Cambridge University Press |c 1999 | |
300 | |a 1 Online-Ressource (xi, 227 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 268 | |
500 | |a Includes bibliographical references (p. [209]-220) and index | ||
500 | |a Local symplectic geometry -- - The WKB-method -- - The WKB-method for a potential minimum -- - Self-adjoint operators -- - The method of stationary phase -- - Tunnel effect and interaction matrix -- - @h-pseudodifferential operators -- - Functional calculus for pseudodifferential operators -- - Trace class operators and applications of the functional calculus -- - More precise spectral asymptotics for non-critical Hamiltonians -- - Improvement when the periodic trajectories form a set of measure 0 -- - A more general study of the trace -- - Spectral theory for perturbed periodic problems -- - Normal forms for some scalar pseudodifferential operators -- - Spectrum of operators with periodic bicharacteristics | ||
650 | 4 | |a Mathematical analysis | |
650 | 7 | |a Approximation, Théorie de l' |2 ram | |
650 | 7 | |a Théorie quantique |2 ram | |
650 | 7 | |a Physique mathématique / Théorie asymptotique |2 ram | |
650 | 7 | |a Théorie spectrale (Mathématiques) |2 ram | |
650 | 7 | |a Valeurs propres |2 ram | |
650 | 7 | |a Mécanique |2 ram | |
650 | 7 | |a Analyse (wiskunde) |2 gtt | |
650 | 7 | |a Operadores microlocais |2 larpcal | |
650 | 4 | |a Analyse microlocale | |
650 | 4 | |a Théorie quantique | |
650 | 4 | |a Approximation, Théorie de l' | |
650 | 4 | |a Spectre (Mathématiques) | |
650 | 4 | |a Physique mathématique | |
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Approximation theory |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Microlocal analysis |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Microlocal analysis | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a WKB-Methode |0 (DE-588)4190133-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a WKB-Methode |0 (DE-588)4190133-2 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 2 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 0 | 3 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 1 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 1 | 2 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 1 | 3 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Sjöstrand, J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028495054 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175454075092992 |
---|---|
any_adam_object | |
author | Dimassi, Mouez |
author_facet | Dimassi, Mouez |
author_role | aut |
author_sort | Dimassi, Mouez |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043070863 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)836871651 (DE-599)BVBBV043070863 |
dewey-full | 530.15/57222 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/57222 |
dewey-search | 530.15/57222 |
dewey-sort | 3530.15 557222 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04696nmm a2200949zcb4500</leader><controlfield tag="001">BV043070863</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051166219X</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-66219-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521665442</subfield><subfield code="9">0-521-66544-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362792</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36279-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662195</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-66219-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521665445</subfield><subfield code="9">978-0-521-66544-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362796</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36279-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836871651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043070863</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/57222</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimassi, Mouez</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral asymptotics in the semi-classical limit</subfield><subfield code="c">Mouez Dimassi, Johannes Sjöstrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, U.K.</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 227 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">268</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [209]-220) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Local symplectic geometry -- - The WKB-method -- - The WKB-method for a potential minimum -- - Self-adjoint operators -- - The method of stationary phase -- - Tunnel effect and interaction matrix -- - @h-pseudodifferential operators -- - Functional calculus for pseudodifferential operators -- - Trace class operators and applications of the functional calculus -- - More precise spectral asymptotics for non-critical Hamiltonians -- - Improvement when the periodic trajectories form a set of measure 0 -- - A more general study of the trace -- - Spectral theory for perturbed periodic problems -- - Normal forms for some scalar pseudodifferential operators -- - Spectrum of operators with periodic bicharacteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation, Théorie de l'</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie quantique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique / Théorie asymptotique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie spectrale (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Valeurs propres</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mécanique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operadores microlocais</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse microlocale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie quantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation, Théorie de l'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microlocal analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microlocal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sjöstrand, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028495054</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043070863 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:32Z |
institution | BVB |
isbn | 051166219X 0521665442 1107362792 9780511662195 9780521665445 9781107362796 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028495054 |
oclc_num | 836871651 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 227 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Dimassi, Mouez Verfasser aut Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand Cambridge, U.K. Cambridge University Press 1999 1 Online-Ressource (xi, 227 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 268 Includes bibliographical references (p. [209]-220) and index Local symplectic geometry -- - The WKB-method -- - The WKB-method for a potential minimum -- - Self-adjoint operators -- - The method of stationary phase -- - Tunnel effect and interaction matrix -- - @h-pseudodifferential operators -- - Functional calculus for pseudodifferential operators -- - Trace class operators and applications of the functional calculus -- - More precise spectral asymptotics for non-critical Hamiltonians -- - Improvement when the periodic trajectories form a set of measure 0 -- - A more general study of the trace -- - Spectral theory for perturbed periodic problems -- - Normal forms for some scalar pseudodifferential operators -- - Spectrum of operators with periodic bicharacteristics Mathematical analysis Approximation, Théorie de l' ram Théorie quantique ram Physique mathématique / Théorie asymptotique ram Théorie spectrale (Mathématiques) ram Valeurs propres ram Mécanique ram Analyse (wiskunde) gtt Operadores microlocais larpcal Analyse microlocale Théorie quantique Approximation, Théorie de l' Spectre (Mathématiques) Physique mathématique SCIENCE / Physics / Mathematical & Computational bisacsh Approximation theory fast Mathematical physics fast Microlocal analysis fast Quantum theory fast Spectral theory (Mathematics) fast Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf WKB-Methode (DE-588)4190133-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Quasiklassische Näherung (DE-588)4296820-3 gnd rswk-swf Mikrolokale Analysis (DE-588)4169832-0 gnd rswk-swf WKB-Methode (DE-588)4190133-2 s Spektraltheorie (DE-588)4116561-5 s Pseudodifferentialoperator (DE-588)4047640-6 s Mikrolokale Analysis (DE-588)4169832-0 s 1\p DE-604 Quasiklassische Näherung (DE-588)4296820-3 s 2\p DE-604 Sjöstrand, J. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dimassi, Mouez Spectral asymptotics in the semi-classical limit Mathematical analysis Approximation, Théorie de l' ram Théorie quantique ram Physique mathématique / Théorie asymptotique ram Théorie spectrale (Mathématiques) ram Valeurs propres ram Mécanique ram Analyse (wiskunde) gtt Operadores microlocais larpcal Analyse microlocale Théorie quantique Approximation, Théorie de l' Spectre (Mathématiques) Physique mathématique SCIENCE / Physics / Mathematical & Computational bisacsh Approximation theory fast Mathematical physics fast Microlocal analysis fast Quantum theory fast Spectral theory (Mathematics) fast Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Pseudodifferentialoperator (DE-588)4047640-6 gnd WKB-Methode (DE-588)4190133-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
subject_GND | (DE-588)4047640-6 (DE-588)4190133-2 (DE-588)4116561-5 (DE-588)4296820-3 (DE-588)4169832-0 |
title | Spectral asymptotics in the semi-classical limit |
title_auth | Spectral asymptotics in the semi-classical limit |
title_exact_search | Spectral asymptotics in the semi-classical limit |
title_full | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_fullStr | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_full_unstemmed | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_short | Spectral asymptotics in the semi-classical limit |
title_sort | spectral asymptotics in the semi classical limit |
topic | Mathematical analysis Approximation, Théorie de l' ram Théorie quantique ram Physique mathématique / Théorie asymptotique ram Théorie spectrale (Mathématiques) ram Valeurs propres ram Mécanique ram Analyse (wiskunde) gtt Operadores microlocais larpcal Analyse microlocale Théorie quantique Approximation, Théorie de l' Spectre (Mathématiques) Physique mathématique SCIENCE / Physics / Mathematical & Computational bisacsh Approximation theory fast Mathematical physics fast Microlocal analysis fast Quantum theory fast Spectral theory (Mathematics) fast Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Pseudodifferentialoperator (DE-588)4047640-6 gnd WKB-Methode (DE-588)4190133-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
topic_facet | Mathematical analysis Approximation, Théorie de l' Théorie quantique Physique mathématique / Théorie asymptotique Théorie spectrale (Mathématiques) Valeurs propres Mécanique Analyse (wiskunde) Operadores microlocais Analyse microlocale Spectre (Mathématiques) Physique mathématique SCIENCE / Physics / Mathematical & Computational Approximation theory Mathematical physics Microlocal analysis Quantum theory Spectral theory (Mathematics) Mathematische Physik Quantentheorie Pseudodifferentialoperator WKB-Methode Spektraltheorie Quasiklassische Näherung Mikrolokale Analysis |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552456 |
work_keys_str_mv | AT dimassimouez spectralasymptoticsinthesemiclassicallimit AT sjostrandj spectralasymptoticsinthesemiclassicallimit |