Representation of rings over skew fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire]
Cambridge University Press
1985
|
Schriftenreihe: | London Mathematical Society lecture note series
92 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 219-221) and index pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts |
Beschreibung: | 1 Online-Ressource (xii, 223 p.) |
ISBN: | 0511661916 0521278538 1107361044 9780511661914 9780521278539 9781107361041 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043070318 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1985 |||| o||u| ||||||eng d | ||
020 | |a 0511661916 |c ebook |9 0-511-66191-6 | ||
020 | |a 0521278538 |9 0-521-27853-8 | ||
020 | |a 1107361044 |c electronic bk. |9 1-107-36104-4 | ||
020 | |a 9780511661914 |c ebook |9 978-0-511-66191-4 | ||
020 | |a 9780521278539 |9 978-0-521-27853-9 | ||
020 | |a 9781107361041 |c electronic bk. |9 978-1-107-36104-1 | ||
035 | |a (OCoLC)839304433 | ||
035 | |a (DE-599)BVBBV043070318 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.4 |2 22 | |
100 | 1 | |a Schofield, A. H., (Aidan Harry) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representation of rings over skew fields |c A.H. Schofield |
264 | 1 | |a Cambridge [Cambridgeshire] |b Cambridge University Press |c 1985 | |
300 | |a 1 Online-Ressource (xii, 223 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 92 | |
500 | |a Includes bibliographical references (p. 219-221) and index | ||
500 | |a pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts | ||
650 | 7 | |a Anneaux commutatifs |2 ram | |
650 | 7 | |a Corps gauches |2 ram | |
650 | 7 | |a Artinscher Ring |2 swd | |
650 | 7 | |a Schiefkörper |2 swd | |
650 | 7 | |a Darstellungstheorie |2 swd | |
650 | 7 | |a Ring (Mathematik) |2 swd | |
650 | 7 | |a Ringtheorie |2 swd | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Commutative rings |2 fast | |
650 | 7 | |a Representations of rings (Algebra) |2 fast | |
650 | 7 | |a Skew fields |2 fast | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Representations of rings (Algebra) | |
650 | 4 | |a Skew fields | |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schiefkörper |0 (DE-588)4052359-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Artinscher Ring |0 (DE-588)4202669-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Artinscher Ring |0 (DE-588)4202669-6 |D s |
689 | 0 | 1 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028494510 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175452987719680 |
---|---|
any_adam_object | |
author | Schofield, A. H., (Aidan Harry) |
author_facet | Schofield, A. H., (Aidan Harry) |
author_role | aut |
author_sort | Schofield, A. H., (Aidan Harry) |
author_variant | a h a h s ahah ahahs |
building | Verbundindex |
bvnumber | BV043070318 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)839304433 (DE-599)BVBBV043070318 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03439nmm a2200793zcb4500</leader><controlfield tag="001">BV043070318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511661916</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-66191-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521278538</subfield><subfield code="9">0-521-27853-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361044</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36104-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661914</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-66191-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521278539</subfield><subfield code="9">978-0-521-27853-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361041</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36104-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043070318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schofield, A. H., (Aidan Harry)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of rings over skew fields</subfield><subfield code="c">A.H. Schofield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [Cambridgeshire]</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 223 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">92</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 219-221) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anneaux commutatifs</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps gauches</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artinscher Ring</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ring (Mathematik)</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative rings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of rings (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skew fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028494510</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043070318 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:31Z |
institution | BVB |
isbn | 0511661916 0521278538 1107361044 9780511661914 9780521278539 9781107361041 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028494510 |
oclc_num | 839304433 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 223 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Schofield, A. H., (Aidan Harry) Verfasser aut Representation of rings over skew fields A.H. Schofield Cambridge [Cambridgeshire] Cambridge University Press 1985 1 Online-Ressource (xii, 223 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 92 Includes bibliographical references (p. 219-221) and index pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts Anneaux commutatifs ram Corps gauches ram Artinscher Ring swd Schiefkörper swd Darstellungstheorie swd Ring (Mathematik) swd Ringtheorie swd MATHEMATICS / Algebra / Intermediate bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Commutative rings Representations of rings (Algebra) Skew fields Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Schiefkörper (DE-588)4052359-7 gnd rswk-swf Ringtheorie (DE-588)4126571-3 gnd rswk-swf Artinscher Ring (DE-588)4202669-6 gnd rswk-swf Artinscher Ring (DE-588)4202669-6 s Schiefkörper (DE-588)4052359-7 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Ring Mathematik (DE-588)4128084-2 s 2\p DE-604 Ringtheorie (DE-588)4126571-3 s 3\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schofield, A. H., (Aidan Harry) Representation of rings over skew fields Anneaux commutatifs ram Corps gauches ram Artinscher Ring swd Schiefkörper swd Darstellungstheorie swd Ring (Mathematik) swd Ringtheorie swd MATHEMATICS / Algebra / Intermediate bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Commutative rings Representations of rings (Algebra) Skew fields Ring Mathematik (DE-588)4128084-2 gnd Darstellungstheorie (DE-588)4148816-7 gnd Schiefkörper (DE-588)4052359-7 gnd Ringtheorie (DE-588)4126571-3 gnd Artinscher Ring (DE-588)4202669-6 gnd |
subject_GND | (DE-588)4128084-2 (DE-588)4148816-7 (DE-588)4052359-7 (DE-588)4126571-3 (DE-588)4202669-6 |
title | Representation of rings over skew fields |
title_auth | Representation of rings over skew fields |
title_exact_search | Representation of rings over skew fields |
title_full | Representation of rings over skew fields A.H. Schofield |
title_fullStr | Representation of rings over skew fields A.H. Schofield |
title_full_unstemmed | Representation of rings over skew fields A.H. Schofield |
title_short | Representation of rings over skew fields |
title_sort | representation of rings over skew fields |
topic | Anneaux commutatifs ram Corps gauches ram Artinscher Ring swd Schiefkörper swd Darstellungstheorie swd Ring (Mathematik) swd Ringtheorie swd MATHEMATICS / Algebra / Intermediate bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Commutative rings Representations of rings (Algebra) Skew fields Ring Mathematik (DE-588)4128084-2 gnd Darstellungstheorie (DE-588)4148816-7 gnd Schiefkörper (DE-588)4052359-7 gnd Ringtheorie (DE-588)4126571-3 gnd Artinscher Ring (DE-588)4202669-6 gnd |
topic_facet | Anneaux commutatifs Corps gauches Artinscher Ring Schiefkörper Darstellungstheorie Ring (Mathematik) Ringtheorie MATHEMATICS / Algebra / Intermediate Commutative rings Representations of rings (Algebra) Skew fields Ring Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552432 |
work_keys_str_mv | AT schofieldahaidanharry representationofringsoverskewfields |