Lattice methods for quantum chromodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ
World Scientific
c2006
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 329-340) and index Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- - 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- - 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- - 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved |
Beschreibung: | 1 Online-Ressource (xv, 345 p.) |
ISBN: | 1281919225 9781281919229 9789812567277 9789812773982 9812567275 9812773983 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043070223 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 1281919225 |9 1-281-91922-5 | ||
020 | |a 9781281919229 |9 978-1-281-91922-9 | ||
020 | |a 9789812567277 |9 978-981-256-727-7 | ||
020 | |a 9789812773982 |c electronic bk. |9 978-981-277-398-2 | ||
020 | |a 9812567275 |9 981-256-727-5 | ||
020 | |a 9812773983 |c electronic bk. |9 981-277-398-3 | ||
035 | |a (OCoLC)299584998 | ||
035 | |a (DE-599)BVBBV043070223 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 539.7/548 |2 22 | |
100 | 1 | |a DeGrand, T., (Thomas) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lattice methods for quantum chromodynamics |c Thomas DeGrand, Carleton DeTar |
264 | 1 | |a Hackensack, NJ |b World Scientific |c c2006 | |
300 | |a 1 Online-Ressource (xv, 345 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 329-340) and index | ||
500 | |a Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- | ||
500 | |a - 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- | ||
500 | |a - 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- | ||
500 | |a - 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy | ||
500 | |a At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Power Resources / Nuclear |2 bisacsh | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Lattice gauge theories |x Mathematical models | |
650 | 4 | |a Quantum chromodynamics |x Mathematical models | |
650 | 0 | 7 | |a Gittermodell |0 (DE-588)4226961-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchromodynamik |0 (DE-588)4128082-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchromodynamik |0 (DE-588)4128082-9 |D s |
689 | 0 | 1 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a DeTar, Carleton |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028494415 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175452805267456 |
---|---|
any_adam_object | |
author | DeGrand, T., (Thomas) |
author_facet | DeGrand, T., (Thomas) |
author_role | aut |
author_sort | DeGrand, T., (Thomas) |
author_variant | t t d tt ttd |
building | Verbundindex |
bvnumber | BV043070223 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)299584998 (DE-599)BVBBV043070223 |
dewey-full | 539.7/548 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.7/548 |
dewey-search | 539.7/548 |
dewey-sort | 3539.7 3548 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06515nmm a2200577zc 4500</leader><controlfield tag="001">BV043070223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281919225</subfield><subfield code="9">1-281-91922-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281919229</subfield><subfield code="9">978-1-281-91922-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812567277</subfield><subfield code="9">978-981-256-727-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773982</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-398-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812567275</subfield><subfield code="9">981-256-727-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773983</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-398-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)299584998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043070223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.7/548</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeGrand, T., (Thomas)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice methods for quantum chromodynamics</subfield><subfield code="c">Thomas DeGrand, Carleton DeTar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 345 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 329-340) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Power Resources / Nuclear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice gauge theories</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum chromodynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchromodynamik</subfield><subfield code="0">(DE-588)4128082-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchromodynamik</subfield><subfield code="0">(DE-588)4128082-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeTar, Carleton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028494415</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043070223 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:31Z |
institution | BVB |
isbn | 1281919225 9781281919229 9789812567277 9789812773982 9812567275 9812773983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028494415 |
oclc_num | 299584998 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 345 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
spelling | DeGrand, T., (Thomas) Verfasser aut Lattice methods for quantum chromodynamics Thomas DeGrand, Carleton DeTar Hackensack, NJ World Scientific c2006 1 Online-Ressource (xv, 345 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 329-340) and index Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- - 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- - 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- - 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved TECHNOLOGY & ENGINEERING / Power Resources / Nuclear bisacsh Mathematisches Modell Lattice gauge theories Mathematical models Quantum chromodynamics Mathematical models Gittermodell (DE-588)4226961-1 gnd rswk-swf Quantenchromodynamik (DE-588)4128082-9 gnd rswk-swf Quantenchromodynamik (DE-588)4128082-9 s Gittermodell (DE-588)4226961-1 s 1\p DE-604 DeTar, Carleton Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | DeGrand, T., (Thomas) Lattice methods for quantum chromodynamics TECHNOLOGY & ENGINEERING / Power Resources / Nuclear bisacsh Mathematisches Modell Lattice gauge theories Mathematical models Quantum chromodynamics Mathematical models Gittermodell (DE-588)4226961-1 gnd Quantenchromodynamik (DE-588)4128082-9 gnd |
subject_GND | (DE-588)4226961-1 (DE-588)4128082-9 |
title | Lattice methods for quantum chromodynamics |
title_auth | Lattice methods for quantum chromodynamics |
title_exact_search | Lattice methods for quantum chromodynamics |
title_full | Lattice methods for quantum chromodynamics Thomas DeGrand, Carleton DeTar |
title_fullStr | Lattice methods for quantum chromodynamics Thomas DeGrand, Carleton DeTar |
title_full_unstemmed | Lattice methods for quantum chromodynamics Thomas DeGrand, Carleton DeTar |
title_short | Lattice methods for quantum chromodynamics |
title_sort | lattice methods for quantum chromodynamics |
topic | TECHNOLOGY & ENGINEERING / Power Resources / Nuclear bisacsh Mathematisches Modell Lattice gauge theories Mathematical models Quantum chromodynamics Mathematical models Gittermodell (DE-588)4226961-1 gnd Quantenchromodynamik (DE-588)4128082-9 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Power Resources / Nuclear Mathematisches Modell Lattice gauge theories Mathematical models Quantum chromodynamics Mathematical models Gittermodell Quantenchromodynamik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210788 |
work_keys_str_mv | AT degrandtthomas latticemethodsforquantumchromodynamics AT detarcarleton latticemethodsforquantumchromodynamics |