The noisy pendulum:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 113-118) and index 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book |
Beschreibung: | 1 Online-Ressource (xi, 120 p.) |
ISBN: | 9789812833006 9812833005 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043070075 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 9789812833006 |c electronic bk. |9 978-981-283-300-6 | ||
020 | |a 9812833005 |c electronic bk. |9 981-283-300-5 | ||
035 | |a (OCoLC)747539689 | ||
035 | |a (DE-599)BVBBV043070075 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 531/.324 |2 22 | |
100 | 1 | |a Gitterman, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The noisy pendulum |c Moshe Gitterman |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2008 | |
300 | |a 1 Online-Ressource (xi, 120 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 113-118) and index | ||
500 | |a 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions | ||
500 | |a This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book | ||
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / Solids |2 bisacsh | |
650 | 4 | |a Pendulum | |
650 | 4 | |a Noise | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Physics | |
650 | 0 | 7 | |a Pendelgleichung |0 (DE-588)4322855-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Pendel |0 (DE-588)7549877-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pendelgleichung |0 (DE-588)4322855-0 |D s |
689 | 0 | 1 | |a Inverses Pendel |0 (DE-588)7549877-7 |D s |
689 | 0 | 2 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028494267 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175452504326144 |
---|---|
any_adam_object | |
author | Gitterman, M. |
author_facet | Gitterman, M. |
author_role | aut |
author_sort | Gitterman, M. |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV043070075 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)747539689 (DE-599)BVBBV043070075 |
dewey-full | 531/.324 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.324 |
dewey-search | 531/.324 |
dewey-sort | 3531 3324 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03959nmm a2200541zc 4500</leader><controlfield tag="001">BV043070075</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812833006</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-300-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812833005</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-283-300-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)747539689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043070075</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.324</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gitterman, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The noisy pendulum</subfield><subfield code="c">Moshe Gitterman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 120 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 113-118) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Solids</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pendulum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Pendel</subfield><subfield code="0">(DE-588)7549877-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inverses Pendel</subfield><subfield code="0">(DE-588)7549877-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028494267</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043070075 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:31Z |
institution | BVB |
isbn | 9789812833006 9812833005 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028494267 |
oclc_num | 747539689 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 120 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Gitterman, M. Verfasser aut The noisy pendulum Moshe Gitterman Singapore World Scientific Pub. Co. c2008 1 Online-Ressource (xi, 120 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 113-118) and index 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Pendulum Noise Mechanics Physics Pendelgleichung (DE-588)4322855-0 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Inverses Pendel (DE-588)7549877-7 gnd rswk-swf Pendelgleichung (DE-588)4322855-0 s Inverses Pendel (DE-588)7549877-7 s Chaotisches System (DE-588)4316104-2 s 1\p DE-604 World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gitterman, M. The noisy pendulum SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Pendulum Noise Mechanics Physics Pendelgleichung (DE-588)4322855-0 gnd Chaotisches System (DE-588)4316104-2 gnd Inverses Pendel (DE-588)7549877-7 gnd |
subject_GND | (DE-588)4322855-0 (DE-588)4316104-2 (DE-588)7549877-7 |
title | The noisy pendulum |
title_auth | The noisy pendulum |
title_exact_search | The noisy pendulum |
title_full | The noisy pendulum Moshe Gitterman |
title_fullStr | The noisy pendulum Moshe Gitterman |
title_full_unstemmed | The noisy pendulum Moshe Gitterman |
title_short | The noisy pendulum |
title_sort | the noisy pendulum |
topic | SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Pendulum Noise Mechanics Physics Pendelgleichung (DE-588)4322855-0 gnd Chaotisches System (DE-588)4316104-2 gnd Inverses Pendel (DE-588)7549877-7 gnd |
topic_facet | SCIENCE / Mechanics / General SCIENCE / Mechanics / Solids Pendulum Noise Mechanics Physics Pendelgleichung Chaotisches System Inverses Pendel |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=521230 |
work_keys_str_mv | AT gittermanm thenoisypendulum AT worldscientificfirm thenoisypendulum |