Mathematical modeling of Earth's dynamical systems: a primer
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- - Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- - Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- - Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d |
Beschreibung: | 1 Online-Ressource (xii, 231 pages) |
ISBN: | 069114513X 0691145148 1400839114 9780691145136 9780691145143 9781400839117 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043069382 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 069114513X |9 0-691-14513-X | ||
020 | |a 0691145148 |9 0-691-14514-8 | ||
020 | |a 1400839114 |c electronic bk. |9 1-4008-3911-4 | ||
020 | |a 9780691145136 |9 978-0-691-14513-6 | ||
020 | |a 9780691145143 |9 978-0-691-14514-3 | ||
020 | |a 9781400839117 |c electronic bk. |9 978-1-4008-3911-7 | ||
035 | |a (OCoLC)719383459 | ||
035 | |a (DE-599)BVBBV043069382 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 550.1/5118 |2 22 | |
100 | 1 | |a Slingerland, Rudy |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical modeling of Earth's dynamical systems |b a primer |c Rudy Slingerland and Lee Kump |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©2011 | |
300 | |a 1 Online-Ressource (xii, 231 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- | ||
500 | |a - Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- | ||
500 | |a - Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- | ||
500 | |a - Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example | ||
500 | |a Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d | ||
650 | 4 | |a Science | |
650 | 4 | |a Geology | |
650 | 4 | |a Natural history | |
650 | 4 | |a Earth sciences / Mathematical models | |
650 | 4 | |a Gaia hypothesis / Mathematical models | |
650 | 7 | |a SCIENCE / Earth Sciences / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / Geophysics |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 4 | |a Geologie | |
650 | 4 | |a Geowissenschaften | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Gaia hypothesis |x Mathematical models | |
650 | 0 | 7 | |a Geowissenschaften |0 (DE-588)4020288-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geowissenschaften |0 (DE-588)4020288-4 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kump, Lee R. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028493574 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175451233452032 |
---|---|
any_adam_object | |
author | Slingerland, Rudy |
author_facet | Slingerland, Rudy |
author_role | aut |
author_sort | Slingerland, Rudy |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV043069382 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)719383459 (DE-599)BVBBV043069382 |
dewey-full | 550.1/5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 550 - Earth sciences |
dewey-raw | 550.1/5118 |
dewey-search | 550.1/5118 |
dewey-sort | 3550.1 45118 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06594nmm a2200685zc 4500</leader><controlfield tag="001">BV043069382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">069114513X</subfield><subfield code="9">0-691-14513-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691145148</subfield><subfield code="9">0-691-14514-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400839114</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3911-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691145136</subfield><subfield code="9">978-0-691-14513-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691145143</subfield><subfield code="9">978-0-691-14514-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839117</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3911-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)719383459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043069382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550.1/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Slingerland, Rudy</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of Earth's dynamical systems</subfield><subfield code="b">a primer</subfield><subfield code="c">Rudy Slingerland and Lee Kump</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 231 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth sciences / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaia hypothesis / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Earth Sciences / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Geophysics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geowissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaia hypothesis</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geowissenschaften</subfield><subfield code="0">(DE-588)4020288-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geowissenschaften</subfield><subfield code="0">(DE-588)4020288-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kump, Lee R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028493574</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043069382 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:30Z |
institution | BVB |
isbn | 069114513X 0691145148 1400839114 9780691145136 9780691145143 9781400839117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028493574 |
oclc_num | 719383459 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 231 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
spelling | Slingerland, Rudy Verfasser aut Mathematical modeling of Earth's dynamical systems a primer Rudy Slingerland and Lee Kump Princeton, N.J. Princeton University Press ©2011 1 Online-Ressource (xii, 231 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- - Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- - Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- - Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d Science Geology Natural history Earth sciences / Mathematical models Gaia hypothesis / Mathematical models SCIENCE / Earth Sciences / General bisacsh SCIENCE / Physics / Geophysics bisacsh MATHEMATICS / Applied bisacsh Geologie Geowissenschaften Mathematisches Modell Naturwissenschaft Gaia hypothesis Mathematical models Geowissenschaften (DE-588)4020288-4 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Geowissenschaften (DE-588)4020288-4 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Kump, Lee R. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Slingerland, Rudy Mathematical modeling of Earth's dynamical systems a primer Science Geology Natural history Earth sciences / Mathematical models Gaia hypothesis / Mathematical models SCIENCE / Earth Sciences / General bisacsh SCIENCE / Physics / Geophysics bisacsh MATHEMATICS / Applied bisacsh Geologie Geowissenschaften Mathematisches Modell Naturwissenschaft Gaia hypothesis Mathematical models Geowissenschaften (DE-588)4020288-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4020288-4 (DE-588)4114528-8 |
title | Mathematical modeling of Earth's dynamical systems a primer |
title_auth | Mathematical modeling of Earth's dynamical systems a primer |
title_exact_search | Mathematical modeling of Earth's dynamical systems a primer |
title_full | Mathematical modeling of Earth's dynamical systems a primer Rudy Slingerland and Lee Kump |
title_fullStr | Mathematical modeling of Earth's dynamical systems a primer Rudy Slingerland and Lee Kump |
title_full_unstemmed | Mathematical modeling of Earth's dynamical systems a primer Rudy Slingerland and Lee Kump |
title_short | Mathematical modeling of Earth's dynamical systems |
title_sort | mathematical modeling of earth s dynamical systems a primer |
title_sub | a primer |
topic | Science Geology Natural history Earth sciences / Mathematical models Gaia hypothesis / Mathematical models SCIENCE / Earth Sciences / General bisacsh SCIENCE / Physics / Geophysics bisacsh MATHEMATICS / Applied bisacsh Geologie Geowissenschaften Mathematisches Modell Naturwissenschaft Gaia hypothesis Mathematical models Geowissenschaften (DE-588)4020288-4 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Science Geology Natural history Earth sciences / Mathematical models Gaia hypothesis / Mathematical models SCIENCE / Earth Sciences / General SCIENCE / Physics / Geophysics MATHEMATICS / Applied Geologie Geowissenschaften Mathematisches Modell Naturwissenschaft Gaia hypothesis Mathematical models |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=363219 |
work_keys_str_mv | AT slingerlandrudy mathematicalmodelingofearthsdynamicalsystemsaprimer AT kumpleer mathematicalmodelingofearthsdynamicalsystemsaprimer |