Beam Dynamics in High Energy Particle Accelerators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 11.2.1 Dipole perturbations: closed orbit distortion Preface; I Electromagnetism and Classical Mechanics; 1 Electromagnetic Fields in Accelerator Components; 1.1 Boundary Conditions on Electromagnetic Fields; 1.1.1 Surface of an infinite permeability material; 1.1.2 Surface of an ideal conductor; 1.2 Two-Dimensional Multipole Fields; 1.2.1 Current distribution for a pure multipole; 1.2.2 Geometry of iron-dominated multipole magnets; 1.2.3 Multipole decomposition; 1.3 Three-Dimensional Fields; 1.3.1 Cartesian and cylindrical modes; 1.3.2 Generalised gradients; 1.4 Fields in Radiofrequency Cavities; 1.4.1 Rectangular cavities 1.4.2 Cylindrical cavities2 Hamiltonian for a Particle in an Accelerator Beam Line; 2.1 The Hamiltonian for a Straight Beam Line; 2.2 Dynamical Variables for Beam Dynamics; 2.3 The Hamiltonian in a Curved Co-ordinate System; 2.4 Symplectic Transfer Maps and Liouville's Theorem; II Single-Particle Linear Dynamics; 3 Linear Transfer Maps for Common Components; 3.1 Drift Space; 3.2 Dipole Magnet; 3.3 Dipole Fringe Fields and Edge Focusing; 3.4 Quadrupole Magnet; 3.5 Solenoid; 3.6 Radiofrequency Cavity; 3.7 Spin Dynamics; 4 Linear Optics in Uncoupled Beam Lines; 4.1 A FODO Lattice 4.2 The Courant-Snyder Parameters4.3 Action-Angle Variables; 4.4 Courant-Snyder Parameters in a FODO Beam Line; 4.5 Hill's Equation; 4.6 Courant-Snyder Parameters and Particle Distribution; 5 Coupled Optics; 5.1 Transverse-Longitudinal Coupling; 5.1.1 Dispersion; 5.1.2 Momentum compaction and phase slip; 5.1.3 Synchrotron motion; 5.2 Fully Coupled Motion; 5.3 Dispersion Revisited; 5.4 Examples of Coupled Optics; 5.4.1 Uniform solenoid field; 5.4.2 Flat-beam electron source; 6 Linear Imperfections in Storage Rings; 6.1 The Closed Orbit; 6.2 Dipole Field Errors; 6.3 Quadrupole Alignment Errors 6.4 Focusing Errors6.5 Beam-Based Alignment of Quadrupoles; 6.6 Coupling Errors; 7 Effects of Synchrotron Radiation; 7.1 Classical Radiation: Radiation Damping; 7.2 Quantum Radiation: Quantum Excitation; 7.3 Equilibrium Emittance and Lattice Design; 7.3.1 Natural emittance in a FODO storage ring; 7.3.2 Double-bend achromat; 7.3.3 TME lattices and multibend achromats; 7.4 Computation of Equilibrium Emittances; 7.5 Synchrotron Radiation and Spin Polarisation; III Single-Particle Nonlinear Dynamics; 8 Examples of Nonlinear Effects in Accelerator Beam Lines 8.1 Longitudinal Dynamics in a Bunch Compressor8.2 Chromaticity in a Linear FODO Beam Line; 8.3 Chromaticity in Storage Rings; 9 Representations of Transfer Maps; 9.1 Lie Transformations; 9.2 Power Series Map for a Sextupole; 9.3 Mixed-Variable Generating Functions; 10 Symplectic Integrators; 10.1 Splitting Methods; 10.2 Explicit Symplectic Integrator for s-dependent Fields; 10.3 Symplectic Runge-Kutta Integrators; 11 Methods for Analysis of Single-Particle Dynamics; 11.1 A Lie Transformation Example: the -I Transformer; 11.2 Canonical Perturbation Theory Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an ap |
Beschreibung: | 1 Online-Ressource (606 pages) |
ISBN: | 1783262788 9781783262786 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043067888 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2014 |||| o||u| ||||||eng d | ||
020 | |a 1783262788 |9 1-78326-278-8 | ||
020 | |a 9781783262786 |9 978-1-78326-278-6 | ||
035 | |a (OCoLC)873140210 | ||
035 | |a (DE-599)BVBBV043067888 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620.1/1228 | |
082 | 0 | |a 620.1 | |
082 | 0 | |a 620.11228 | |
100 | 1 | |a Wolski, Andrzej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Beam Dynamics in High Energy Particle Accelerators |
264 | 1 | |a Singapore |b World Scientific Publishing Company |c 2014 | |
300 | |a 1 Online-Ressource (606 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 11.2.1 Dipole perturbations: closed orbit distortion | ||
500 | |a Preface; I Electromagnetism and Classical Mechanics; 1 Electromagnetic Fields in Accelerator Components; 1.1 Boundary Conditions on Electromagnetic Fields; 1.1.1 Surface of an infinite permeability material; 1.1.2 Surface of an ideal conductor; 1.2 Two-Dimensional Multipole Fields; 1.2.1 Current distribution for a pure multipole; 1.2.2 Geometry of iron-dominated multipole magnets; 1.2.3 Multipole decomposition; 1.3 Three-Dimensional Fields; 1.3.1 Cartesian and cylindrical modes; 1.3.2 Generalised gradients; 1.4 Fields in Radiofrequency Cavities; 1.4.1 Rectangular cavities | ||
500 | |a 1.4.2 Cylindrical cavities2 Hamiltonian for a Particle in an Accelerator Beam Line; 2.1 The Hamiltonian for a Straight Beam Line; 2.2 Dynamical Variables for Beam Dynamics; 2.3 The Hamiltonian in a Curved Co-ordinate System; 2.4 Symplectic Transfer Maps and Liouville's Theorem; II Single-Particle Linear Dynamics; 3 Linear Transfer Maps for Common Components; 3.1 Drift Space; 3.2 Dipole Magnet; 3.3 Dipole Fringe Fields and Edge Focusing; 3.4 Quadrupole Magnet; 3.5 Solenoid; 3.6 Radiofrequency Cavity; 3.7 Spin Dynamics; 4 Linear Optics in Uncoupled Beam Lines; 4.1 A FODO Lattice | ||
500 | |a 4.2 The Courant-Snyder Parameters4.3 Action-Angle Variables; 4.4 Courant-Snyder Parameters in a FODO Beam Line; 4.5 Hill's Equation; 4.6 Courant-Snyder Parameters and Particle Distribution; 5 Coupled Optics; 5.1 Transverse-Longitudinal Coupling; 5.1.1 Dispersion; 5.1.2 Momentum compaction and phase slip; 5.1.3 Synchrotron motion; 5.2 Fully Coupled Motion; 5.3 Dispersion Revisited; 5.4 Examples of Coupled Optics; 5.4.1 Uniform solenoid field; 5.4.2 Flat-beam electron source; 6 Linear Imperfections in Storage Rings; 6.1 The Closed Orbit; 6.2 Dipole Field Errors; 6.3 Quadrupole Alignment Errors | ||
500 | |a 6.4 Focusing Errors6.5 Beam-Based Alignment of Quadrupoles; 6.6 Coupling Errors; 7 Effects of Synchrotron Radiation; 7.1 Classical Radiation: Radiation Damping; 7.2 Quantum Radiation: Quantum Excitation; 7.3 Equilibrium Emittance and Lattice Design; 7.3.1 Natural emittance in a FODO storage ring; 7.3.2 Double-bend achromat; 7.3.3 TME lattices and multibend achromats; 7.4 Computation of Equilibrium Emittances; 7.5 Synchrotron Radiation and Spin Polarisation; III Single-Particle Nonlinear Dynamics; 8 Examples of Nonlinear Effects in Accelerator Beam Lines | ||
500 | |a 8.1 Longitudinal Dynamics in a Bunch Compressor8.2 Chromaticity in a Linear FODO Beam Line; 8.3 Chromaticity in Storage Rings; 9 Representations of Transfer Maps; 9.1 Lie Transformations; 9.2 Power Series Map for a Sextupole; 9.3 Mixed-Variable Generating Functions; 10 Symplectic Integrators; 10.1 Splitting Methods; 10.2 Explicit Symplectic Integrator for s-dependent Fields; 10.3 Symplectic Runge-Kutta Integrators; 11 Methods for Analysis of Single-Particle Dynamics; 11.1 A Lie Transformation Example: the -I Transformer; 11.2 Canonical Perturbation Theory | ||
500 | |a Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an ap | ||
650 | 4 | |a Beam dynamics | |
650 | 4 | |a Linear accelerators | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Reference |2 bisacsh | |
650 | 4 | |a Particle accelerators | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028492080 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175448547000320 |
---|---|
any_adam_object | |
author | Wolski, Andrzej |
author_facet | Wolski, Andrzej |
author_role | aut |
author_sort | Wolski, Andrzej |
author_variant | a w aw |
building | Verbundindex |
bvnumber | BV043067888 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)873140210 (DE-599)BVBBV043067888 |
dewey-full | 620.1/1228 620.1 620.11228 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1228 620.1 620.11228 |
dewey-search | 620.1/1228 620.1 620.11228 |
dewey-sort | 3620.1 41228 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05240nmm a2200493zc 4500</leader><controlfield tag="001">BV043067888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783262788</subfield><subfield code="9">1-78326-278-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783262786</subfield><subfield code="9">978-1-78326-278-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873140210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043067888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1228</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11228</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wolski, Andrzej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beam Dynamics in High Energy Particle Accelerators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (606 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11.2.1 Dipole perturbations: closed orbit distortion</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; I Electromagnetism and Classical Mechanics; 1 Electromagnetic Fields in Accelerator Components; 1.1 Boundary Conditions on Electromagnetic Fields; 1.1.1 Surface of an infinite permeability material; 1.1.2 Surface of an ideal conductor; 1.2 Two-Dimensional Multipole Fields; 1.2.1 Current distribution for a pure multipole; 1.2.2 Geometry of iron-dominated multipole magnets; 1.2.3 Multipole decomposition; 1.3 Three-Dimensional Fields; 1.3.1 Cartesian and cylindrical modes; 1.3.2 Generalised gradients; 1.4 Fields in Radiofrequency Cavities; 1.4.1 Rectangular cavities</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.4.2 Cylindrical cavities2 Hamiltonian for a Particle in an Accelerator Beam Line; 2.1 The Hamiltonian for a Straight Beam Line; 2.2 Dynamical Variables for Beam Dynamics; 2.3 The Hamiltonian in a Curved Co-ordinate System; 2.4 Symplectic Transfer Maps and Liouville's Theorem; II Single-Particle Linear Dynamics; 3 Linear Transfer Maps for Common Components; 3.1 Drift Space; 3.2 Dipole Magnet; 3.3 Dipole Fringe Fields and Edge Focusing; 3.4 Quadrupole Magnet; 3.5 Solenoid; 3.6 Radiofrequency Cavity; 3.7 Spin Dynamics; 4 Linear Optics in Uncoupled Beam Lines; 4.1 A FODO Lattice</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.2 The Courant-Snyder Parameters4.3 Action-Angle Variables; 4.4 Courant-Snyder Parameters in a FODO Beam Line; 4.5 Hill's Equation; 4.6 Courant-Snyder Parameters and Particle Distribution; 5 Coupled Optics; 5.1 Transverse-Longitudinal Coupling; 5.1.1 Dispersion; 5.1.2 Momentum compaction and phase slip; 5.1.3 Synchrotron motion; 5.2 Fully Coupled Motion; 5.3 Dispersion Revisited; 5.4 Examples of Coupled Optics; 5.4.1 Uniform solenoid field; 5.4.2 Flat-beam electron source; 6 Linear Imperfections in Storage Rings; 6.1 The Closed Orbit; 6.2 Dipole Field Errors; 6.3 Quadrupole Alignment Errors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.4 Focusing Errors6.5 Beam-Based Alignment of Quadrupoles; 6.6 Coupling Errors; 7 Effects of Synchrotron Radiation; 7.1 Classical Radiation: Radiation Damping; 7.2 Quantum Radiation: Quantum Excitation; 7.3 Equilibrium Emittance and Lattice Design; 7.3.1 Natural emittance in a FODO storage ring; 7.3.2 Double-bend achromat; 7.3.3 TME lattices and multibend achromats; 7.4 Computation of Equilibrium Emittances; 7.5 Synchrotron Radiation and Spin Polarisation; III Single-Particle Nonlinear Dynamics; 8 Examples of Nonlinear Effects in Accelerator Beam Lines</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8.1 Longitudinal Dynamics in a Bunch Compressor8.2 Chromaticity in a Linear FODO Beam Line; 8.3 Chromaticity in Storage Rings; 9 Representations of Transfer Maps; 9.1 Lie Transformations; 9.2 Power Series Map for a Sextupole; 9.3 Mixed-Variable Generating Functions; 10 Symplectic Integrators; 10.1 Splitting Methods; 10.2 Explicit Symplectic Integrator for s-dependent Fields; 10.3 Symplectic Runge-Kutta Integrators; 11 Methods for Analysis of Single-Particle Dynamics; 11.1 A Lie Transformation Example: the -I Transformer; 11.2 Canonical Perturbation Theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an ap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beam dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear accelerators</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle accelerators</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028492080</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043067888 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:27Z |
institution | BVB |
isbn | 1783262788 9781783262786 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028492080 |
oclc_num | 873140210 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (606 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Publishing Company |
record_format | marc |
spelling | Wolski, Andrzej Verfasser aut Beam Dynamics in High Energy Particle Accelerators Singapore World Scientific Publishing Company 2014 1 Online-Ressource (606 pages) txt rdacontent c rdamedia cr rdacarrier 11.2.1 Dipole perturbations: closed orbit distortion Preface; I Electromagnetism and Classical Mechanics; 1 Electromagnetic Fields in Accelerator Components; 1.1 Boundary Conditions on Electromagnetic Fields; 1.1.1 Surface of an infinite permeability material; 1.1.2 Surface of an ideal conductor; 1.2 Two-Dimensional Multipole Fields; 1.2.1 Current distribution for a pure multipole; 1.2.2 Geometry of iron-dominated multipole magnets; 1.2.3 Multipole decomposition; 1.3 Three-Dimensional Fields; 1.3.1 Cartesian and cylindrical modes; 1.3.2 Generalised gradients; 1.4 Fields in Radiofrequency Cavities; 1.4.1 Rectangular cavities 1.4.2 Cylindrical cavities2 Hamiltonian for a Particle in an Accelerator Beam Line; 2.1 The Hamiltonian for a Straight Beam Line; 2.2 Dynamical Variables for Beam Dynamics; 2.3 The Hamiltonian in a Curved Co-ordinate System; 2.4 Symplectic Transfer Maps and Liouville's Theorem; II Single-Particle Linear Dynamics; 3 Linear Transfer Maps for Common Components; 3.1 Drift Space; 3.2 Dipole Magnet; 3.3 Dipole Fringe Fields and Edge Focusing; 3.4 Quadrupole Magnet; 3.5 Solenoid; 3.6 Radiofrequency Cavity; 3.7 Spin Dynamics; 4 Linear Optics in Uncoupled Beam Lines; 4.1 A FODO Lattice 4.2 The Courant-Snyder Parameters4.3 Action-Angle Variables; 4.4 Courant-Snyder Parameters in a FODO Beam Line; 4.5 Hill's Equation; 4.6 Courant-Snyder Parameters and Particle Distribution; 5 Coupled Optics; 5.1 Transverse-Longitudinal Coupling; 5.1.1 Dispersion; 5.1.2 Momentum compaction and phase slip; 5.1.3 Synchrotron motion; 5.2 Fully Coupled Motion; 5.3 Dispersion Revisited; 5.4 Examples of Coupled Optics; 5.4.1 Uniform solenoid field; 5.4.2 Flat-beam electron source; 6 Linear Imperfections in Storage Rings; 6.1 The Closed Orbit; 6.2 Dipole Field Errors; 6.3 Quadrupole Alignment Errors 6.4 Focusing Errors6.5 Beam-Based Alignment of Quadrupoles; 6.6 Coupling Errors; 7 Effects of Synchrotron Radiation; 7.1 Classical Radiation: Radiation Damping; 7.2 Quantum Radiation: Quantum Excitation; 7.3 Equilibrium Emittance and Lattice Design; 7.3.1 Natural emittance in a FODO storage ring; 7.3.2 Double-bend achromat; 7.3.3 TME lattices and multibend achromats; 7.4 Computation of Equilibrium Emittances; 7.5 Synchrotron Radiation and Spin Polarisation; III Single-Particle Nonlinear Dynamics; 8 Examples of Nonlinear Effects in Accelerator Beam Lines 8.1 Longitudinal Dynamics in a Bunch Compressor8.2 Chromaticity in a Linear FODO Beam Line; 8.3 Chromaticity in Storage Rings; 9 Representations of Transfer Maps; 9.1 Lie Transformations; 9.2 Power Series Map for a Sextupole; 9.3 Mixed-Variable Generating Functions; 10 Symplectic Integrators; 10.1 Splitting Methods; 10.2 Explicit Symplectic Integrator for s-dependent Fields; 10.3 Symplectic Runge-Kutta Integrators; 11 Methods for Analysis of Single-Particle Dynamics; 11.1 A Lie Transformation Example: the -I Transformer; 11.2 Canonical Perturbation Theory Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an ap Beam dynamics Linear accelerators TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Particle accelerators http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886 Aggregator Volltext |
spellingShingle | Wolski, Andrzej Beam Dynamics in High Energy Particle Accelerators Beam dynamics Linear accelerators TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Particle accelerators |
title | Beam Dynamics in High Energy Particle Accelerators |
title_auth | Beam Dynamics in High Energy Particle Accelerators |
title_exact_search | Beam Dynamics in High Energy Particle Accelerators |
title_full | Beam Dynamics in High Energy Particle Accelerators |
title_fullStr | Beam Dynamics in High Energy Particle Accelerators |
title_full_unstemmed | Beam Dynamics in High Energy Particle Accelerators |
title_short | Beam Dynamics in High Energy Particle Accelerators |
title_sort | beam dynamics in high energy particle accelerators |
topic | Beam dynamics Linear accelerators TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Particle accelerators |
topic_facet | Beam dynamics Linear accelerators TECHNOLOGY & ENGINEERING / Engineering (General) TECHNOLOGY & ENGINEERING / Reference Particle accelerators |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711886 |
work_keys_str_mv | AT wolskiandrzej beamdynamicsinhighenergyparticleaccelerators |