Global transversality, resonance and chaotic dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 437-444) and index Ch. 1. Introduction. 1.1. A brief history of dynamics. 1.2. Nonlinear Hamiltonian systems. 1.3. Dissipative nonlinear systems. 1.4. Book layout -- ch. 2. Differential geometry of flows. 2.1. Normal distance and G-functions. 2.2. Non-contact flows. 2.3. Contact flows. 2.4. Concluding remarks -- ch. 3. Global transversality in continuous dynamical systems. 3.1. Nonlinear dynamical systems. 3.2. Local and global flows. 3.3. Global transversality. 3.4. Global tangency. 3.5. Perturbed Hamiltonian systems. 3.6. Two-dimensional Hamiltonian systems. 3.7. A damped Duffing oscillator. 3.8. Global transversality to a generalized separatrix -- ch. 4. Chaotic layer dynamics. 4.1. Chaotic domains in phase space. 4.2. First integral quantity increments. 4.3. Resonance mechanism of chaotic layers. 4.4. Energy increments in perturbed Hamiltonian systems -- - ch. 5. Two-dimensional stochastic layers. 5.1. Geometric description in phase space. 5.2. Approximate predictions. 5.3. Stochastic layer in a Duffing oscillator. 5.4. Conclusions and discussions -- ch. 6. Stochasticity in resonant separatrix layers. 6.1. Two-dimensional resonant separatrix layers. 6.2. 2n-dimensional resonant separatrix layers. 6.3. Resonant layers in a Duffing oscillator. 6.4. Resonant layers in a parametric pendulum -- ch. 7. Nonlinear dynamics on an equi-energy surface. 7.1. Hamiltonian systems. 7.2. Nonlinear resonance. 7.3. Energy spectrum. 7.4. Chaotic motions on an equi-energy surface. 7.5. Conclusions -- ch. 8. Stability and grazing in dissipative systems. 8.1. Equilibrium stability. 8.2. Periodic flow stability. 8.3. Local grazing bifurcation. 8.4. Global grazing bifurcation -- - ch. 9. Global dynamics in two-dimensional dynamical systems. 9.1. Tangency and transversality. 9.2. Energy increment and Melnikov function. 9.3. Mapping structures. 9.4. Bifurcation scenario. 9.5. Numerical illustrations -- ch. 10. Flow switchability in discontinuous dynamical systems. 10.1. Discontinuous dynamical systems. 10.2. Passable flows. 10.3. Non-passable flows. 10.4. Tangential flows. 10.5. Flow switching bifurcations. 10.6. First integral quantity increment This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n-dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics |
Beschreibung: | 1 Online-Ressource (xii, 447 p.) |
ISBN: | 1281911682 9781281911681 9789812771117 9789812771124 9812771115 9812771123 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043066030 | ||
003 | DE-604 | ||
005 | 20190925 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 1281911682 |9 1-281-91168-2 | ||
020 | |a 9781281911681 |9 978-1-281-91168-1 | ||
020 | |a 9789812771117 |9 978-981-277-111-7 | ||
020 | |a 9789812771124 |c electronic bk. |9 978-981-277-112-4 | ||
020 | |a 9812771115 |9 981-277-111-5 | ||
020 | |a 9812771123 |c electronic bk. |9 981-277-112-3 | ||
035 | |a (OCoLC)262540316 | ||
035 | |a (DE-599)BVBBV043066030 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003/.857 |2 22 | |
100 | 1 | |a Luo, Albert C. J. |d 1964- |e Verfasser |0 (DE-588)142378097 |4 aut | |
245 | 1 | 0 | |a Global transversality, resonance and chaotic dynamics |c Albert C.J. Luo |
264 | 1 | |a Singapore |b World Scientific |c c2008 | |
300 | |a 1 Online-Ressource (xii, 447 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 437-444) and index | ||
500 | |a Ch. 1. Introduction. 1.1. A brief history of dynamics. 1.2. Nonlinear Hamiltonian systems. 1.3. Dissipative nonlinear systems. 1.4. Book layout -- ch. 2. Differential geometry of flows. 2.1. Normal distance and G-functions. 2.2. Non-contact flows. 2.3. Contact flows. 2.4. Concluding remarks -- ch. 3. Global transversality in continuous dynamical systems. 3.1. Nonlinear dynamical systems. 3.2. Local and global flows. 3.3. Global transversality. 3.4. Global tangency. 3.5. Perturbed Hamiltonian systems. 3.6. Two-dimensional Hamiltonian systems. 3.7. A damped Duffing oscillator. 3.8. Global transversality to a generalized separatrix -- ch. 4. Chaotic layer dynamics. 4.1. Chaotic domains in phase space. 4.2. First integral quantity increments. 4.3. Resonance mechanism of chaotic layers. 4.4. Energy increments in perturbed Hamiltonian systems -- | ||
500 | |a - ch. 5. Two-dimensional stochastic layers. 5.1. Geometric description in phase space. 5.2. Approximate predictions. 5.3. Stochastic layer in a Duffing oscillator. 5.4. Conclusions and discussions -- ch. 6. Stochasticity in resonant separatrix layers. 6.1. Two-dimensional resonant separatrix layers. 6.2. 2n-dimensional resonant separatrix layers. 6.3. Resonant layers in a Duffing oscillator. 6.4. Resonant layers in a parametric pendulum -- ch. 7. Nonlinear dynamics on an equi-energy surface. 7.1. Hamiltonian systems. 7.2. Nonlinear resonance. 7.3. Energy spectrum. 7.4. Chaotic motions on an equi-energy surface. 7.5. Conclusions -- ch. 8. Stability and grazing in dissipative systems. 8.1. Equilibrium stability. 8.2. Periodic flow stability. 8.3. Local grazing bifurcation. 8.4. Global grazing bifurcation -- | ||
500 | |a - ch. 9. Global dynamics in two-dimensional dynamical systems. 9.1. Tangency and transversality. 9.2. Energy increment and Melnikov function. 9.3. Mapping structures. 9.4. Bifurcation scenario. 9.5. Numerical illustrations -- ch. 10. Flow switchability in discontinuous dynamical systems. 10.1. Discontinuous dynamical systems. 10.2. Passable flows. 10.3. Non-passable flows. 10.4. Tangential flows. 10.5. Flow switching bifurcations. 10.6. First integral quantity increment | ||
500 | |a This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n-dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics | ||
650 | 7 | |a SCIENCE / Chaotic Behavior in Systems |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Dynamics |2 fast | |
650 | 7 | |a Nonlinear systems |2 fast | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Nonlinear systems | |
650 | 4 | |a Chaotic behavior in systems | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028490222 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175445128642560 |
---|---|
any_adam_object | |
author | Luo, Albert C. J. 1964- |
author_GND | (DE-588)142378097 |
author_facet | Luo, Albert C. J. 1964- |
author_role | aut |
author_sort | Luo, Albert C. J. 1964- |
author_variant | a c j l acj acjl |
building | Verbundindex |
bvnumber | BV043066030 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)262540316 (DE-599)BVBBV043066030 |
dewey-full | 003/.857 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.857 |
dewey-search | 003/.857 |
dewey-sort | 13 3857 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05072nmm a2200517zc 4500</leader><controlfield tag="001">BV043066030</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190925 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281911682</subfield><subfield code="9">1-281-91168-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281911681</subfield><subfield code="9">978-1-281-91168-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812771117</subfield><subfield code="9">978-981-277-111-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812771124</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-112-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812771115</subfield><subfield code="9">981-277-111-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812771123</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-112-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262540316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043066030</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.857</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Albert C. J.</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142378097</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global transversality, resonance and chaotic dynamics</subfield><subfield code="c">Albert C.J. Luo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 447 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 437-444) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ch. 1. Introduction. 1.1. A brief history of dynamics. 1.2. Nonlinear Hamiltonian systems. 1.3. Dissipative nonlinear systems. 1.4. Book layout -- ch. 2. Differential geometry of flows. 2.1. Normal distance and G-functions. 2.2. Non-contact flows. 2.3. Contact flows. 2.4. Concluding remarks -- ch. 3. Global transversality in continuous dynamical systems. 3.1. Nonlinear dynamical systems. 3.2. Local and global flows. 3.3. Global transversality. 3.4. Global tangency. 3.5. Perturbed Hamiltonian systems. 3.6. Two-dimensional Hamiltonian systems. 3.7. A damped Duffing oscillator. 3.8. Global transversality to a generalized separatrix -- ch. 4. Chaotic layer dynamics. 4.1. Chaotic domains in phase space. 4.2. First integral quantity increments. 4.3. Resonance mechanism of chaotic layers. 4.4. Energy increments in perturbed Hamiltonian systems -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 5. Two-dimensional stochastic layers. 5.1. Geometric description in phase space. 5.2. Approximate predictions. 5.3. Stochastic layer in a Duffing oscillator. 5.4. Conclusions and discussions -- ch. 6. Stochasticity in resonant separatrix layers. 6.1. Two-dimensional resonant separatrix layers. 6.2. 2n-dimensional resonant separatrix layers. 6.3. Resonant layers in a Duffing oscillator. 6.4. Resonant layers in a parametric pendulum -- ch. 7. Nonlinear dynamics on an equi-energy surface. 7.1. Hamiltonian systems. 7.2. Nonlinear resonance. 7.3. Energy spectrum. 7.4. Chaotic motions on an equi-energy surface. 7.5. Conclusions -- ch. 8. Stability and grazing in dissipative systems. 8.1. Equilibrium stability. 8.2. Periodic flow stability. 8.3. Local grazing bifurcation. 8.4. Global grazing bifurcation -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 9. Global dynamics in two-dimensional dynamical systems. 9.1. Tangency and transversality. 9.2. Energy increment and Melnikov function. 9.3. Mapping structures. 9.4. Bifurcation scenario. 9.5. Numerical illustrations -- ch. 10. Flow switchability in discontinuous dynamical systems. 10.1. Discontinuous dynamical systems. 10.2. Passable flows. 10.3. Non-passable flows. 10.4. Tangential flows. 10.5. Flow switching bifurcations. 10.6. First integral quantity increment</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n-dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chaotic Behavior in Systems</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028490222</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043066030 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:24Z |
institution | BVB |
isbn | 1281911682 9781281911681 9789812771117 9789812771124 9812771115 9812771123 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028490222 |
oclc_num | 262540316 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 447 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Luo, Albert C. J. 1964- Verfasser (DE-588)142378097 aut Global transversality, resonance and chaotic dynamics Albert C.J. Luo Singapore World Scientific c2008 1 Online-Ressource (xii, 447 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 437-444) and index Ch. 1. Introduction. 1.1. A brief history of dynamics. 1.2. Nonlinear Hamiltonian systems. 1.3. Dissipative nonlinear systems. 1.4. Book layout -- ch. 2. Differential geometry of flows. 2.1. Normal distance and G-functions. 2.2. Non-contact flows. 2.3. Contact flows. 2.4. Concluding remarks -- ch. 3. Global transversality in continuous dynamical systems. 3.1. Nonlinear dynamical systems. 3.2. Local and global flows. 3.3. Global transversality. 3.4. Global tangency. 3.5. Perturbed Hamiltonian systems. 3.6. Two-dimensional Hamiltonian systems. 3.7. A damped Duffing oscillator. 3.8. Global transversality to a generalized separatrix -- ch. 4. Chaotic layer dynamics. 4.1. Chaotic domains in phase space. 4.2. First integral quantity increments. 4.3. Resonance mechanism of chaotic layers. 4.4. Energy increments in perturbed Hamiltonian systems -- - ch. 5. Two-dimensional stochastic layers. 5.1. Geometric description in phase space. 5.2. Approximate predictions. 5.3. Stochastic layer in a Duffing oscillator. 5.4. Conclusions and discussions -- ch. 6. Stochasticity in resonant separatrix layers. 6.1. Two-dimensional resonant separatrix layers. 6.2. 2n-dimensional resonant separatrix layers. 6.3. Resonant layers in a Duffing oscillator. 6.4. Resonant layers in a parametric pendulum -- ch. 7. Nonlinear dynamics on an equi-energy surface. 7.1. Hamiltonian systems. 7.2. Nonlinear resonance. 7.3. Energy spectrum. 7.4. Chaotic motions on an equi-energy surface. 7.5. Conclusions -- ch. 8. Stability and grazing in dissipative systems. 8.1. Equilibrium stability. 8.2. Periodic flow stability. 8.3. Local grazing bifurcation. 8.4. Global grazing bifurcation -- - ch. 9. Global dynamics in two-dimensional dynamical systems. 9.1. Tangency and transversality. 9.2. Energy increment and Melnikov function. 9.3. Mapping structures. 9.4. Bifurcation scenario. 9.5. Numerical illustrations -- ch. 10. Flow switchability in discontinuous dynamical systems. 10.1. Discontinuous dynamical systems. 10.2. Passable flows. 10.3. Non-passable flows. 10.4. Tangential flows. 10.5. Flow switching bifurcations. 10.6. First integral quantity increment This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n-dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Dynamics fast Nonlinear systems fast Dynamics Nonlinear systems Chaotic behavior in systems http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069 Aggregator Volltext |
spellingShingle | Luo, Albert C. J. 1964- Global transversality, resonance and chaotic dynamics SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Dynamics fast Nonlinear systems fast Dynamics Nonlinear systems Chaotic behavior in systems |
title | Global transversality, resonance and chaotic dynamics |
title_auth | Global transversality, resonance and chaotic dynamics |
title_exact_search | Global transversality, resonance and chaotic dynamics |
title_full | Global transversality, resonance and chaotic dynamics Albert C.J. Luo |
title_fullStr | Global transversality, resonance and chaotic dynamics Albert C.J. Luo |
title_full_unstemmed | Global transversality, resonance and chaotic dynamics Albert C.J. Luo |
title_short | Global transversality, resonance and chaotic dynamics |
title_sort | global transversality resonance and chaotic dynamics |
topic | SCIENCE / Chaotic Behavior in Systems bisacsh Chaotic behavior in systems fast Dynamics fast Nonlinear systems fast Dynamics Nonlinear systems Chaotic behavior in systems |
topic_facet | SCIENCE / Chaotic Behavior in Systems Chaotic behavior in systems Dynamics Nonlinear systems |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=236069 |
work_keys_str_mv | AT luoalbertcj globaltransversalityresonanceandchaoticdynamics |