Optimization in function spaces: with stability considerations in Orlicz spaces
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2011
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
13 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level |
Beschreibung: | 1 Online-Ressource (xiv, 388 p.) |
ISBN: | 1283166348 3110250217 9781283166348 9783110250206 9783110250213 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043063157 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 1283166348 |9 1-283-16634-8 | ||
020 | |a 3110250217 |c electronic bk. |9 3-11-025021-7 | ||
020 | |a 9781283166348 |9 978-1-283-16634-8 | ||
020 | |a 9783110250206 |c alk. paper |9 978-3-11-025020-6 | ||
020 | |a 9783110250213 |c electronic bk. |9 978-3-11-025021-3 | ||
035 | |a (OCoLC)754713662 | ||
035 | |a (DE-599)BVBBV043063157 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.392 |2 22 | |
100 | 1 | |a Kosmol, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization in function spaces |b with stability considerations in Orlicz spaces |c Peter Kosmol, Dieter Müller-Wichards |
264 | 1 | |a Berlin |b De Gruyter |c 2011 | |
300 | |a 1 Online-Ressource (xiv, 388 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 13 | |
500 | |a Includes bibliographical references and index | ||
500 | |a This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level | ||
650 | 7 | |a MATHEMATICS / Differential Equations / General |2 bisacsh | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Stability |x Mathematical models | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Orlicz spaces | |
650 | 0 | 7 | |a Orlicz-Raum |0 (DE-588)4172841-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |D s |
689 | 0 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 2 | |a Orlicz-Raum |0 (DE-588)4172841-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Müller-Wichards, D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028487349 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175439716941824 |
---|---|
any_adam_object | |
author | Kosmol, Peter |
author_facet | Kosmol, Peter |
author_role | aut |
author_sort | Kosmol, Peter |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV043063157 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)754713662 (DE-599)BVBBV043063157 |
dewey-full | 515/.392 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.392 |
dewey-search | 515/.392 |
dewey-sort | 3515 3392 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03576nmm a2200565zcb4500</leader><controlfield tag="001">BV043063157</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283166348</subfield><subfield code="9">1-283-16634-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250217</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-025021-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283166348</subfield><subfield code="9">978-1-283-16634-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250206</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-3-11-025020-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250213</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-025021-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754713662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043063157</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.392</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kosmol, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in function spaces</subfield><subfield code="b">with stability considerations in Orlicz spaces</subfield><subfield code="c">Peter Kosmol, Dieter Müller-Wichards</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 388 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orlicz spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orlicz-Raum</subfield><subfield code="0">(DE-588)4172841-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Orlicz-Raum</subfield><subfield code="0">(DE-588)4172841-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller-Wichards, D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028487349</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043063157 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:19Z |
institution | BVB |
isbn | 1283166348 3110250217 9781283166348 9783110250206 9783110250213 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028487349 |
oclc_num | 754713662 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 388 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Kosmol, Peter Verfasser aut Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Müller-Wichards Berlin De Gruyter 2011 1 Online-Ressource (xiv, 388 p.) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 13 Includes bibliographical references and index This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level MATHEMATICS / Differential Equations / General bisacsh Mathematisches Modell Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 s Banach-Raum (DE-588)4004402-6 s Orlicz-Raum (DE-588)4172841-5 s 1\p DE-604 Müller-Wichards, D. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kosmol, Peter Optimization in function spaces with stability considerations in Orlicz spaces MATHEMATICS / Differential Equations / General bisacsh Mathematisches Modell Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4172841-5 (DE-588)4137027-2 (DE-588)4004402-6 |
title | Optimization in function spaces with stability considerations in Orlicz spaces |
title_auth | Optimization in function spaces with stability considerations in Orlicz spaces |
title_exact_search | Optimization in function spaces with stability considerations in Orlicz spaces |
title_full | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Müller-Wichards |
title_fullStr | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Müller-Wichards |
title_full_unstemmed | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Müller-Wichards |
title_short | Optimization in function spaces |
title_sort | optimization in function spaces with stability considerations in orlicz spaces |
title_sub | with stability considerations in Orlicz spaces |
topic | MATHEMATICS / Differential Equations / General bisacsh Mathematisches Modell Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | MATHEMATICS / Differential Equations / General Mathematisches Modell Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum Konvexe Optimierung Banach-Raum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=388245 |
work_keys_str_mv | AT kosmolpeter optimizationinfunctionspaceswithstabilityconsiderationsinorliczspaces AT mullerwichardsd optimizationinfunctionspaceswithstabilityconsiderationsinorliczspaces |