Stability criteria for fluid flows:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schriftenreihe: | Series on advances in mathematics for applied sciences
v. 81 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 379-399) 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- - 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- - 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them |
Beschreibung: | 1 Online-Ressource (xvi, 399 p.) |
ISBN: | 9789814289566 9789814289573 9814289566 9814289574 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043062354 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814289566 |9 978-981-4289-56-6 | ||
020 | |a 9789814289573 |c electronic bk. |9 978-981-4289-57-3 | ||
020 | |a 9814289566 |9 981-4289-56-6 | ||
020 | |a 9814289574 |c electronic bk. |9 981-4289-57-4 | ||
035 | |a (OCoLC)630153528 | ||
035 | |a (DE-599)BVBBV043062354 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 536/.25 |2 22 | |
100 | 1 | |a Georgescu, Adelina |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stability criteria for fluid flows |c Adelina Georgescu, Lidia Palese |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a 1 Online-Ressource (xvi, 399 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on advances in mathematics for applied sciences |v v. 81 | |
500 | |a Includes bibliographical references (p. 379-399) | ||
500 | |a 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- | ||
500 | |a - 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- | ||
500 | |a - 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost | ||
500 | |a This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them | ||
650 | 7 | |a SCIENCE / Mechanics / Thermodynamics |2 bisacsh | |
650 | 7 | |a Konvektion |2 swd | |
650 | 7 | |a Mathematisches Modell |2 swd | |
650 | 7 | |a Strömungsmechanik |2 swd | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Heat |x Convection |x Mathematics | |
650 | 4 | |a Fluid mechanics |x Mathematics | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvektion |0 (DE-588)4117572-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 1 | |a Konvektion |0 (DE-588)4117572-4 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Palese, Lidia |e Sonstige |4 oth | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028486546 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175438300315648 |
---|---|
any_adam_object | |
author | Georgescu, Adelina |
author_facet | Georgescu, Adelina |
author_role | aut |
author_sort | Georgescu, Adelina |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV043062354 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)630153528 (DE-599)BVBBV043062354 |
dewey-full | 536/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.25 |
dewey-search | 536/.25 |
dewey-sort | 3536 225 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05392nmm a2200625zcb4500</leader><controlfield tag="001">BV043062354</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814289566</subfield><subfield code="9">978-981-4289-56-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814289573</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4289-57-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814289566</subfield><subfield code="9">981-4289-56-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814289574</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4289-57-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)630153528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043062354</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536/.25</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Georgescu, Adelina</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability criteria for fluid flows</subfield><subfield code="c">Adelina Georgescu, Lidia Palese</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 399 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences</subfield><subfield code="v">v. 81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 379-399)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Thermodynamics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Konvektion</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield><subfield code="x">Convection</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palese, Lidia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028486546</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043062354 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:17Z |
institution | BVB |
isbn | 9789814289566 9789814289573 9814289566 9814289574 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028486546 |
oclc_num | 630153528 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvi, 399 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series on advances in mathematics for applied sciences |
spelling | Georgescu, Adelina Verfasser aut Stability criteria for fluid flows Adelina Georgescu, Lidia Palese Singapore World Scientific Pub. Co. c2010 1 Online-Ressource (xvi, 399 p.) txt rdacontent c rdamedia cr rdacarrier Series on advances in mathematics for applied sciences v. 81 Includes bibliographical references (p. 379-399) 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- - 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- - 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them SCIENCE / Mechanics / Thermodynamics bisacsh Konvektion swd Mathematisches Modell swd Strömungsmechanik swd Mathematik Heat Convection Mathematics Fluid mechanics Mathematics Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Konvektion (DE-588)4117572-4 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s Konvektion (DE-588)4117572-4 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Palese, Lidia Sonstige oth World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Georgescu, Adelina Stability criteria for fluid flows SCIENCE / Mechanics / Thermodynamics bisacsh Konvektion swd Mathematisches Modell swd Strömungsmechanik swd Mathematik Heat Convection Mathematics Fluid mechanics Mathematics Mathematisches Modell (DE-588)4114528-8 gnd Konvektion (DE-588)4117572-4 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4117572-4 (DE-588)4077970-1 |
title | Stability criteria for fluid flows |
title_auth | Stability criteria for fluid flows |
title_exact_search | Stability criteria for fluid flows |
title_full | Stability criteria for fluid flows Adelina Georgescu, Lidia Palese |
title_fullStr | Stability criteria for fluid flows Adelina Georgescu, Lidia Palese |
title_full_unstemmed | Stability criteria for fluid flows Adelina Georgescu, Lidia Palese |
title_short | Stability criteria for fluid flows |
title_sort | stability criteria for fluid flows |
topic | SCIENCE / Mechanics / Thermodynamics bisacsh Konvektion swd Mathematisches Modell swd Strömungsmechanik swd Mathematik Heat Convection Mathematics Fluid mechanics Mathematics Mathematisches Modell (DE-588)4114528-8 gnd Konvektion (DE-588)4117572-4 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | SCIENCE / Mechanics / Thermodynamics Konvektion Mathematisches Modell Strömungsmechanik Mathematik Heat Convection Mathematics Fluid mechanics Mathematics |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=340665 |
work_keys_str_mv | AT georgescuadelina stabilitycriteriaforfluidflows AT paleselidia stabilitycriteriaforfluidflows AT worldscientificfirm stabilitycriteriaforfluidflows |