Topology with applications: topological spaces via near and far
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
c2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and indexes 1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- - 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- - 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems 8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications |
Beschreibung: | 1 Online-Ressource (xv, 277 pages) |
ISBN: | 9789814407656 9789814407663 9814407658 9814407666 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043062154 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814407656 |9 978-981-4407-65-6 | ||
020 | |a 9789814407663 |c electronic bk. |9 978-981-4407-66-3 | ||
020 | |a 9814407658 |9 981-4407-65-8 | ||
020 | |a 9814407666 |c electronic bk. |9 981-4407-66-6 | ||
035 | |a (OCoLC)840506973 | ||
035 | |a (DE-599)BVBBV043062154 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514 |2 23 | |
100 | 1 | |a Naimpally, S. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topology with applications |b topological spaces via near and far |c Somashekhar A. Naimpally, James F. Peters |
264 | 1 | |a New Jersey |b World Scientific |c c2013 | |
300 | |a 1 Online-Ressource (xv, 277 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and indexes | ||
500 | |a 1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- | ||
500 | |a - 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- | ||
500 | |a - 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems | ||
500 | |a 8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems | ||
500 | |a The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Topologischer Raum |0 (DE-588)4137586-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologischer Raum |0 (DE-588)4137586-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Peters, James F. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028486346 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175437947994112 |
---|---|
any_adam_object | |
author | Naimpally, S. A. |
author_facet | Naimpally, S. A. |
author_role | aut |
author_sort | Naimpally, S. A. |
author_variant | s a n sa san |
building | Verbundindex |
bvnumber | BV043062154 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)840506973 (DE-599)BVBBV043062154 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07101nmm a2200505zc 4500</leader><controlfield tag="001">BV043062154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814407656</subfield><subfield code="9">978-981-4407-65-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814407663</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4407-66-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814407658</subfield><subfield code="9">981-4407-65-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814407666</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4407-66-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)840506973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043062154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naimpally, S. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology with applications</subfield><subfield code="b">topological spaces via near and far</subfield><subfield code="c">Somashekhar A. Naimpally, James F. Peters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 277 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, James F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028486346</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043062154 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:17Z |
institution | BVB |
isbn | 9789814407656 9789814407663 9814407658 9814407666 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028486346 |
oclc_num | 840506973 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 277 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Naimpally, S. A. Verfasser aut Topology with applications topological spaces via near and far Somashekhar A. Naimpally, James F. Peters New Jersey World Scientific c2013 1 Online-Ressource (xv, 277 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and indexes 1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- - 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- - 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems 8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications MATHEMATICS / Topology bisacsh Topology Topologischer Raum (DE-588)4137586-5 gnd rswk-swf Topologischer Raum (DE-588)4137586-5 s 1\p DE-604 Peters, James F. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Naimpally, S. A. Topology with applications topological spaces via near and far MATHEMATICS / Topology bisacsh Topology Topologischer Raum (DE-588)4137586-5 gnd |
subject_GND | (DE-588)4137586-5 |
title | Topology with applications topological spaces via near and far |
title_auth | Topology with applications topological spaces via near and far |
title_exact_search | Topology with applications topological spaces via near and far |
title_full | Topology with applications topological spaces via near and far Somashekhar A. Naimpally, James F. Peters |
title_fullStr | Topology with applications topological spaces via near and far Somashekhar A. Naimpally, James F. Peters |
title_full_unstemmed | Topology with applications topological spaces via near and far Somashekhar A. Naimpally, James F. Peters |
title_short | Topology with applications |
title_sort | topology with applications topological spaces via near and far |
title_sub | topological spaces via near and far |
topic | MATHEMATICS / Topology bisacsh Topology Topologischer Raum (DE-588)4137586-5 gnd |
topic_facet | MATHEMATICS / Topology Topology Topologischer Raum |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564507 |
work_keys_str_mv | AT naimpallysa topologywithapplicationstopologicalspacesvianearandfar AT petersjamesf topologywithapplicationstopologicalspacesvianearandfar |