Set theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Ausgabe: | 1st English ed |
Schriftenreihe: | London Mathematical Society student texts
48 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Originally published in Hungarian as Halmazeimélet, 1983 Includes bibliographical references (p. [295]-296 and indexes Definition of equivalence. The concept of cardinality. The Axiom of Choice -- - Countable cardinal, continuum cardinal -- - Comparison of cardinals -- - Operations with sets and cardinals -- - Ordered sets. Order types. Ordinals -- - Properties of wellordered sets. Good sets. The ordinal operation -- - Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem -- - Definition of the cardinality operation. Properties of cardinalities. The cofinality operation -- - Properties of the power operation -- - Hints for solving problems marked with * in Part I -- - An axiomatic development of set theory -- - The Zermelo-Fraenkel axiom system of set theory -- - Definition of concepts; extension of the language -- - A sketch of the development. Metatheorems -- - A sketch of the development. Definitions of simple operations and properties (continued) -- - A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) -- - The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 -- - The role of the Axiom of Regularity -- - Proofs of relative consistency. The method of interpretation -- - Proofs of relative consistency. The method of models -- - Topics in combinatorial set theory -- - Stationary sets -- - [Delta]-systems -- - Ramsey's Theorem and its generalizations. Partition calculus -- - Inaccessible cardinals. Mahlo cardinals -- - Measurable cardinals -- - Real-valued measurable cardinals, saturated ideals -- - Weakly compact and Ramsey cardinals -- - Set mappings |
Beschreibung: | 1 Online-Ressource (viii, 316 p.) |
ISBN: | 0511623569 0521593441 052159667X 1107362555 9780511623561 9780521593441 9780521596671 9781107362550 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043060393 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1999 |||| o||u| ||||||eng d | ||
020 | |a 0511623569 |c ebook |9 0-511-62356-9 | ||
020 | |a 0521593441 |9 0-521-59344-1 | ||
020 | |a 052159667X |9 0-521-59667-X | ||
020 | |a 1107362555 |c electronic bk. |9 1-107-36255-5 | ||
020 | |a 9780511623561 |c ebook |9 978-0-511-62356-1 | ||
020 | |a 9780521593441 |9 978-0-521-59344-1 | ||
020 | |a 9780521596671 |9 978-0-521-59667-1 | ||
020 | |a 9781107362550 |c electronic bk. |9 978-1-107-36255-0 | ||
035 | |a (OCoLC)831676599 | ||
035 | |a (DE-599)BVBBV043060393 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3/22 |2 22 | |
100 | 1 | |a Hajnal, A. |e Verfasser |4 aut | |
240 | 1 | 0 | |a Halmazeimélet |
245 | 1 | 0 | |a Set theory |c András Hajnal and Peter Hamburger ; translated by Attila Máté |
250 | |a 1st English ed | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 Online-Ressource (viii, 316 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 48 | |
500 | |a Originally published in Hungarian as Halmazeimélet, 1983 | ||
500 | |a Includes bibliographical references (p. [295]-296 and indexes | ||
500 | |a Definition of equivalence. The concept of cardinality. The Axiom of Choice -- - Countable cardinal, continuum cardinal -- - Comparison of cardinals -- - Operations with sets and cardinals -- - Ordered sets. Order types. Ordinals -- - Properties of wellordered sets. Good sets. The ordinal operation -- - Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem -- - Definition of the cardinality operation. Properties of cardinalities. The cofinality operation -- - Properties of the power operation -- - Hints for solving problems marked with * in Part I -- - An axiomatic development of set theory -- - The Zermelo-Fraenkel axiom system of set theory -- - Definition of concepts; extension of the language -- - A sketch of the development. Metatheorems -- - A sketch of the development. Definitions of simple operations and properties (continued) -- - A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) -- - The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 -- - The role of the Axiom of Regularity -- - Proofs of relative consistency. The method of interpretation -- - Proofs of relative consistency. The method of models -- - Topics in combinatorial set theory -- - Stationary sets -- - [Delta]-systems -- - Ramsey's Theorem and its generalizations. Partition calculus -- - Inaccessible cardinals. Mahlo cardinals -- - Measurable cardinals -- - Real-valued measurable cardinals, saturated ideals -- - Weakly compact and Ramsey cardinals -- - Set mappings | ||
546 | |a Translated into English | ||
650 | 7 | |a TEORIA DOS CONJUNTOS. |2 larpcal | |
650 | 7 | |a MATHEMATICS / Set Theory |2 bisacsh | |
650 | 7 | |a Set theory |2 fast | |
650 | 4 | |a Set theory | |
700 | 1 | |a Hamburg, P. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028484585 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175434879860736 |
---|---|
any_adam_object | |
author | Hajnal, A. |
author_facet | Hajnal, A. |
author_role | aut |
author_sort | Hajnal, A. |
author_variant | a h ah |
building | Verbundindex |
bvnumber | BV043060393 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)831676599 (DE-599)BVBBV043060393 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st English ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03764nmm a2200541zcb4500</leader><controlfield tag="001">BV043060393</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623569</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-62356-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521593441</subfield><subfield code="9">0-521-59344-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052159667X</subfield><subfield code="9">0-521-59667-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362555</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36255-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623561</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-62356-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521593441</subfield><subfield code="9">978-0-521-59344-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521596671</subfield><subfield code="9">978-0-521-59667-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362550</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36255-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)831676599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043060393</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hajnal, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Halmazeimélet</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory</subfield><subfield code="c">András Hajnal and Peter Hamburger ; translated by Attila Máté</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st English ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 316 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">48</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published in Hungarian as Halmazeimélet, 1983</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [295]-296 and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Definition of equivalence. The concept of cardinality. The Axiom of Choice -- - Countable cardinal, continuum cardinal -- - Comparison of cardinals -- - Operations with sets and cardinals -- - Ordered sets. Order types. Ordinals -- - Properties of wellordered sets. Good sets. The ordinal operation -- - Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem -- - Definition of the cardinality operation. Properties of cardinalities. The cofinality operation -- - Properties of the power operation -- - Hints for solving problems marked with * in Part I -- - An axiomatic development of set theory -- - The Zermelo-Fraenkel axiom system of set theory -- - Definition of concepts; extension of the language -- - A sketch of the development. Metatheorems -- - A sketch of the development. Definitions of simple operations and properties (continued) -- - A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) -- - The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 -- - The role of the Axiom of Regularity -- - Proofs of relative consistency. The method of interpretation -- - Proofs of relative consistency. The method of models -- - Topics in combinatorial set theory -- - Stationary sets -- - [Delta]-systems -- - Ramsey's Theorem and its generalizations. Partition calculus -- - Inaccessible cardinals. Mahlo cardinals -- - Measurable cardinals -- - Real-valued measurable cardinals, saturated ideals -- - Weakly compact and Ramsey cardinals -- - Set mappings</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Translated into English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS CONJUNTOS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Set Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamburg, P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028484585</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043060393 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:14Z |
institution | BVB |
isbn | 0511623569 0521593441 052159667X 1107362555 9780511623561 9780521593441 9780521596671 9781107362550 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028484585 |
oclc_num | 831676599 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 316 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Hajnal, A. Verfasser aut Halmazeimélet Set theory András Hajnal and Peter Hamburger ; translated by Attila Máté 1st English ed Cambridge Cambridge University Press 1999 1 Online-Ressource (viii, 316 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 48 Originally published in Hungarian as Halmazeimélet, 1983 Includes bibliographical references (p. [295]-296 and indexes Definition of equivalence. The concept of cardinality. The Axiom of Choice -- - Countable cardinal, continuum cardinal -- - Comparison of cardinals -- - Operations with sets and cardinals -- - Ordered sets. Order types. Ordinals -- - Properties of wellordered sets. Good sets. The ordinal operation -- - Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem -- - Definition of the cardinality operation. Properties of cardinalities. The cofinality operation -- - Properties of the power operation -- - Hints for solving problems marked with * in Part I -- - An axiomatic development of set theory -- - The Zermelo-Fraenkel axiom system of set theory -- - Definition of concepts; extension of the language -- - A sketch of the development. Metatheorems -- - A sketch of the development. Definitions of simple operations and properties (continued) -- - A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) -- - The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 -- - The role of the Axiom of Regularity -- - Proofs of relative consistency. The method of interpretation -- - Proofs of relative consistency. The method of models -- - Topics in combinatorial set theory -- - Stationary sets -- - [Delta]-systems -- - Ramsey's Theorem and its generalizations. Partition calculus -- - Inaccessible cardinals. Mahlo cardinals -- - Measurable cardinals -- - Real-valued measurable cardinals, saturated ideals -- - Weakly compact and Ramsey cardinals -- - Set mappings Translated into English TEORIA DOS CONJUNTOS. larpcal MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Hamburg, P. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345 Aggregator Volltext |
spellingShingle | Hajnal, A. Set theory TEORIA DOS CONJUNTOS. larpcal MATHEMATICS / Set Theory bisacsh Set theory fast Set theory |
title | Set theory |
title_alt | Halmazeimélet |
title_auth | Set theory |
title_exact_search | Set theory |
title_full | Set theory András Hajnal and Peter Hamburger ; translated by Attila Máté |
title_fullStr | Set theory András Hajnal and Peter Hamburger ; translated by Attila Máté |
title_full_unstemmed | Set theory András Hajnal and Peter Hamburger ; translated by Attila Máté |
title_short | Set theory |
title_sort | set theory |
topic | TEORIA DOS CONJUNTOS. larpcal MATHEMATICS / Set Theory bisacsh Set theory fast Set theory |
topic_facet | TEORIA DOS CONJUNTOS. MATHEMATICS / Set Theory Set theory |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551345 |
work_keys_str_mv | AT hajnala halmazeimelet AT hamburgp halmazeimelet AT hajnala settheory AT hamburgp settheory |