The Gross-Zagier formula on Shimura curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2012, c2013
|
Schriftenreihe: | Annals of mathematics studies
no. 184 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof o |
Beschreibung: | 1 Online-Ressource (viii, 256 p.) |
ISBN: | 0691155925 1283571463 1400845645 9780691155920 9781283571463 9781400845644 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043060370 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2012 |||| o||u| ||||||eng d | ||
020 | |a 0691155925 |9 0-691-15592-5 | ||
020 | |a 1283571463 |9 1-283-57146-3 | ||
020 | |a 1400845645 |c electronic bk. |9 1-4008-4564-5 | ||
020 | |a 9780691155920 |c pbk. : alk. paper |9 978-0-691-15592-0 | ||
020 | |a 9781283571463 |9 978-1-283-57146-3 | ||
020 | |a 9781400845644 |c electronic bk. |9 978-1-4008-4564-4 | ||
035 | |a (OCoLC)811400574 | ||
035 | |a (DE-599)BVBBV043060370 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.3/52 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Yuan, Xinyi |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Gross-Zagier formula on Shimura curves |c Xinyi Yuan, Shou-wu Zhang, and Wei Zhang |
264 | 1 | |a Princeton |b Princeton University Press |c 2012, c2013 | |
300 | |a 1 Online-Ressource (viii, 256 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies |v no. 184 | |
500 | |a Includes bibliographical references and index | ||
500 | |a This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof o | ||
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 7 | |a Arithmetical algebraic geometry |2 fast | |
650 | 7 | |a Automorphic forms |2 fast | |
650 | 7 | |a Quaternions |2 fast | |
650 | 7 | |a Shimura varieties |2 fast | |
650 | 7 | |a Shimura varieties |2 local | |
650 | 7 | |a Arithmetical algebraic geometry |2 local | |
650 | 7 | |a Automorphic forms |2 local | |
650 | 7 | |a Quaternions |2 local | |
650 | 4 | |a Shimura varieties | |
650 | 4 | |a Arithmetical algebraic geometry | |
650 | 4 | |a Automorphic forms | |
650 | 4 | |a Quaternions | |
700 | 1 | |a Zhang, Shouwu |e Sonstige |4 oth | |
700 | 1 | |a Zhang, Wei |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0-691-15591-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-691-15591-3 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028484562 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175434853646336 |
---|---|
any_adam_object | |
author | Yuan, Xinyi |
author_facet | Yuan, Xinyi |
author_role | aut |
author_sort | Yuan, Xinyi |
author_variant | x y xy |
building | Verbundindex |
bvnumber | BV043060370 |
classification_rvk | SI 830 SK 370 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)811400574 (DE-599)BVBBV043060370 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03156nmm a2200637zcb4500</leader><controlfield tag="001">BV043060370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691155925</subfield><subfield code="9">0-691-15592-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283571463</subfield><subfield code="9">1-283-57146-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400845645</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4564-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691155920</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">978-0-691-15592-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283571463</subfield><subfield code="9">978-1-283-57146-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400845644</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4564-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811400574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043060370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Xinyi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Gross-Zagier formula on Shimura curves</subfield><subfield code="c">Xinyi Yuan, Shou-wu Zhang, and Wei Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012, c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 256 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 184</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof o</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arithmetical algebraic geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automorphic forms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shimura varieties</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shimura varieties</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arithmetical algebraic geometry</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automorphic forms</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetical algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shouwu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-691-15591-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-691-15591-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028484562</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043060370 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:14Z |
institution | BVB |
isbn | 0691155925 1283571463 1400845645 9780691155920 9781283571463 9781400845644 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028484562 |
oclc_num | 811400574 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 256 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of mathematics studies |
spelling | Yuan, Xinyi Verfasser aut The Gross-Zagier formula on Shimura curves Xinyi Yuan, Shou-wu Zhang, and Wei Zhang Princeton Princeton University Press 2012, c2013 1 Online-Ressource (viii, 256 p.) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies no. 184 Includes bibliographical references and index This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof o MATHEMATICS / Geometry / Algebraic bisacsh Arithmetical algebraic geometry fast Automorphic forms fast Quaternions fast Shimura varieties fast Shimura varieties local Arithmetical algebraic geometry local Automorphic forms local Quaternions local Shimura varieties Arithmetical algebraic geometry Automorphic forms Quaternions Zhang, Shouwu Sonstige oth Zhang, Wei Sonstige oth Erscheint auch als Druckausgabe 0-691-15591-7 Erscheint auch als Druckausgabe 978-0-691-15591-3 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005 Aggregator Volltext |
spellingShingle | Yuan, Xinyi The Gross-Zagier formula on Shimura curves MATHEMATICS / Geometry / Algebraic bisacsh Arithmetical algebraic geometry fast Automorphic forms fast Quaternions fast Shimura varieties fast Shimura varieties local Arithmetical algebraic geometry local Automorphic forms local Quaternions local Shimura varieties Arithmetical algebraic geometry Automorphic forms Quaternions |
title | The Gross-Zagier formula on Shimura curves |
title_auth | The Gross-Zagier formula on Shimura curves |
title_exact_search | The Gross-Zagier formula on Shimura curves |
title_full | The Gross-Zagier formula on Shimura curves Xinyi Yuan, Shou-wu Zhang, and Wei Zhang |
title_fullStr | The Gross-Zagier formula on Shimura curves Xinyi Yuan, Shou-wu Zhang, and Wei Zhang |
title_full_unstemmed | The Gross-Zagier formula on Shimura curves Xinyi Yuan, Shou-wu Zhang, and Wei Zhang |
title_short | The Gross-Zagier formula on Shimura curves |
title_sort | the gross zagier formula on shimura curves |
topic | MATHEMATICS / Geometry / Algebraic bisacsh Arithmetical algebraic geometry fast Automorphic forms fast Quaternions fast Shimura varieties fast Shimura varieties local Arithmetical algebraic geometry local Automorphic forms local Quaternions local Shimura varieties Arithmetical algebraic geometry Automorphic forms Quaternions |
topic_facet | MATHEMATICS / Geometry / Algebraic Arithmetical algebraic geometry Automorphic forms Quaternions Shimura varieties |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=479005 |
work_keys_str_mv | AT yuanxinyi thegrosszagierformulaonshimuracurves AT zhangshouwu thegrosszagierformulaonshimuracurves AT zhangwei thegrosszagierformulaonshimuracurves |