Set theory for the working mathematician:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
c1997
|
Schriftenreihe: | London Mathematical Society student texts
39 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 225-227) and index Basics of set theory -- - Axiomatic set theory -- - Why axiomatic set theory? -- - The language and the basic axioms -- - Relations, functions, and Cartesian product -- - Relations and the axiom of choice -- - Functions and the replacement scheme axiom -- - Generalized union, intersection, and Cartesian product -- - Partial- and linear-order relations -- - Natural numbers, integers, and real numbers -- - Natural numbers -- - Integers and rational numbers -- - Real numbers -- - Fundamental tools of set theory -- - Well orderings and transfinite induction -- - Well-ordered sets and the axiom of foundation -- - Ordinal numbers -- - Definitions by transfinite induction -- - Zorn's lemma in algebra, analysis, and topology -- - Cardinal numbers -- - Cardinal numbers and the continuum hypothesis -- - Cardinal arithmetic -- - Cofinality -- - The power of recursive definitions -- - Subsets of R[superscript n] -- - Strange subsets of R[superscript n] and the diagonalization argument -- - Closed sets and Borel sets -- - Lebesgue-measurable sets and sets with the Baire property -- - Strange real functions -- - Measurable and nonmeasurable functions -- - Darboux functions -- - Additive functions and Hamel bases -- - Symmetrically discontinuous functions -- - When induction is too short -- - Martin's axiom -- - Rasiowa-Sikorski lemma -- - Martin's axiom -- - Suslin hypothesis and diamond principle -- - Forcing -- - Elements of logic and other forcing preliminaries -- - Forcing method and a model for [not sign]CH -- - Model for CH and [diamonds suit symbol] -- - Product lemma and Cohen model -- - Model for MA+[not sign]CH. |
Beschreibung: | 1 Online-Ressource (xi, 236 p.) |
ISBN: | 0521594413 0521594650 1107089069 1139173138 9780521594417 9780521594653 9781107089068 9781139173131 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043059986 | ||
003 | DE-604 | ||
005 | 20200803 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1997 |||| o||u| ||||||eng d | ||
020 | |a 0521594413 |9 0-521-59441-3 | ||
020 | |a 0521594650 |9 0-521-59465-0 | ||
020 | |a 1107089069 |c electronic bk. |9 1-107-08906-9 | ||
020 | |a 1139173138 |c electronic bk. |9 1-139-17313-8 | ||
020 | |a 9780521594417 |9 978-0-521-59441-7 | ||
020 | |a 9780521594653 |9 978-0-521-59465-3 | ||
020 | |a 9781107089068 |c electronic bk. |9 978-1-107-08906-8 | ||
020 | |a 9781139173131 |c electronic bk. |9 978-1-139-17313-1 | ||
035 | |a (OCoLC)817922080 | ||
035 | |a (DE-599)BVBBV043059986 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3/22 |2 22 | |
100 | 1 | |a Ciesielski, Krzysztof |d 1957- |e Verfasser |0 (DE-588)143779508 |4 aut | |
245 | 1 | 0 | |a Set theory for the working mathematician |c Krzysztof Ciesielski |
264 | 1 | |a Cambridge |b Cambridge University Press |c c1997 | |
300 | |a 1 Online-Ressource (xi, 236 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 39 | |
500 | |a Includes bibliographical references (p. 225-227) and index | ||
500 | |a Basics of set theory -- - Axiomatic set theory -- - Why axiomatic set theory? -- - The language and the basic axioms -- - Relations, functions, and Cartesian product -- - Relations and the axiom of choice -- - Functions and the replacement scheme axiom -- - Generalized union, intersection, and Cartesian product -- - Partial- and linear-order relations -- - Natural numbers, integers, and real numbers -- - Natural numbers -- - Integers and rational numbers -- - Real numbers -- - Fundamental tools of set theory -- - Well orderings and transfinite induction -- - Well-ordered sets and the axiom of foundation -- - Ordinal numbers -- - Definitions by transfinite induction -- - Zorn's lemma in algebra, analysis, and topology -- - Cardinal numbers -- - Cardinal numbers and the continuum hypothesis -- - Cardinal arithmetic -- - Cofinality -- - The power of recursive definitions -- - Subsets of R[superscript n] -- - Strange subsets of R[superscript n] and the diagonalization argument -- - Closed sets and Borel sets -- - Lebesgue-measurable sets and sets with the Baire property -- - Strange real functions -- - Measurable and nonmeasurable functions -- - Darboux functions -- - Additive functions and Hamel bases -- - Symmetrically discontinuous functions -- - When induction is too short -- - Martin's axiom -- - Rasiowa-Sikorski lemma -- - Martin's axiom -- - Suslin hypothesis and diamond principle -- - Forcing -- - Elements of logic and other forcing preliminaries -- - Forcing method and a model for [not sign]CH -- - Model for CH and [diamonds suit symbol] -- - Product lemma and Cohen model -- - Model for MA+[not sign]CH. | ||
650 | 7 | |a TEORIA DOS CONJUNTOS. |2 larpcal | |
650 | 7 | |a Mengenlehre |2 swd | |
650 | 7 | |a MATHEMATICS / Set Theory |2 bisacsh | |
650 | 7 | |a Set theory |2 fast | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028484178 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175434139566080 |
---|---|
any_adam_object | |
author | Ciesielski, Krzysztof 1957- |
author_GND | (DE-588)143779508 |
author_facet | Ciesielski, Krzysztof 1957- |
author_role | aut |
author_sort | Ciesielski, Krzysztof 1957- |
author_variant | k c kc |
building | Verbundindex |
bvnumber | BV043059986 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)817922080 (DE-599)BVBBV043059986 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03883nmm a2200541zcb4500</leader><controlfield tag="001">BV043059986</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200803 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521594413</subfield><subfield code="9">0-521-59441-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521594650</subfield><subfield code="9">0-521-59465-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089069</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08906-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139173138</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-139-17313-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521594417</subfield><subfield code="9">978-0-521-59441-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521594653</subfield><subfield code="9">978-0-521-59465-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089068</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08906-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173131</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-139-17313-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817922080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043059986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciesielski, Krzysztof</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143779508</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory for the working mathematician</subfield><subfield code="c">Krzysztof Ciesielski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">c1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 236 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 225-227) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Basics of set theory -- - Axiomatic set theory -- - Why axiomatic set theory? -- - The language and the basic axioms -- - Relations, functions, and Cartesian product -- - Relations and the axiom of choice -- - Functions and the replacement scheme axiom -- - Generalized union, intersection, and Cartesian product -- - Partial- and linear-order relations -- - Natural numbers, integers, and real numbers -- - Natural numbers -- - Integers and rational numbers -- - Real numbers -- - Fundamental tools of set theory -- - Well orderings and transfinite induction -- - Well-ordered sets and the axiom of foundation -- - Ordinal numbers -- - Definitions by transfinite induction -- - Zorn's lemma in algebra, analysis, and topology -- - Cardinal numbers -- - Cardinal numbers and the continuum hypothesis -- - Cardinal arithmetic -- - Cofinality -- - The power of recursive definitions -- - Subsets of R[superscript n] -- - Strange subsets of R[superscript n] and the diagonalization argument -- - Closed sets and Borel sets -- - Lebesgue-measurable sets and sets with the Baire property -- - Strange real functions -- - Measurable and nonmeasurable functions -- - Darboux functions -- - Additive functions and Hamel bases -- - Symmetrically discontinuous functions -- - When induction is too short -- - Martin's axiom -- - Rasiowa-Sikorski lemma -- - Martin's axiom -- - Suslin hypothesis and diamond principle -- - Forcing -- - Elements of logic and other forcing preliminaries -- - Forcing method and a model for [not sign]CH -- - Model for CH and [diamonds suit symbol] -- - Product lemma and Cohen model -- - Model for MA+[not sign]CH.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS CONJUNTOS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Set Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028484178</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043059986 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:13Z |
institution | BVB |
isbn | 0521594413 0521594650 1107089069 1139173138 9780521594417 9780521594653 9781107089068 9781139173131 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028484178 |
oclc_num | 817922080 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xi, 236 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Ciesielski, Krzysztof 1957- Verfasser (DE-588)143779508 aut Set theory for the working mathematician Krzysztof Ciesielski Cambridge Cambridge University Press c1997 1 Online-Ressource (xi, 236 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 39 Includes bibliographical references (p. 225-227) and index Basics of set theory -- - Axiomatic set theory -- - Why axiomatic set theory? -- - The language and the basic axioms -- - Relations, functions, and Cartesian product -- - Relations and the axiom of choice -- - Functions and the replacement scheme axiom -- - Generalized union, intersection, and Cartesian product -- - Partial- and linear-order relations -- - Natural numbers, integers, and real numbers -- - Natural numbers -- - Integers and rational numbers -- - Real numbers -- - Fundamental tools of set theory -- - Well orderings and transfinite induction -- - Well-ordered sets and the axiom of foundation -- - Ordinal numbers -- - Definitions by transfinite induction -- - Zorn's lemma in algebra, analysis, and topology -- - Cardinal numbers -- - Cardinal numbers and the continuum hypothesis -- - Cardinal arithmetic -- - Cofinality -- - The power of recursive definitions -- - Subsets of R[superscript n] -- - Strange subsets of R[superscript n] and the diagonalization argument -- - Closed sets and Borel sets -- - Lebesgue-measurable sets and sets with the Baire property -- - Strange real functions -- - Measurable and nonmeasurable functions -- - Darboux functions -- - Additive functions and Hamel bases -- - Symmetrically discontinuous functions -- - When induction is too short -- - Martin's axiom -- - Rasiowa-Sikorski lemma -- - Martin's axiom -- - Suslin hypothesis and diamond principle -- - Forcing -- - Elements of logic and other forcing preliminaries -- - Forcing method and a model for [not sign]CH -- - Model for CH and [diamonds suit symbol] -- - Product lemma and Cohen model -- - Model for MA+[not sign]CH. TEORIA DOS CONJUNTOS. larpcal Mengenlehre swd MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ciesielski, Krzysztof 1957- Set theory for the working mathematician TEORIA DOS CONJUNTOS. larpcal Mengenlehre swd MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4074715-3 |
title | Set theory for the working mathematician |
title_auth | Set theory for the working mathematician |
title_exact_search | Set theory for the working mathematician |
title_full | Set theory for the working mathematician Krzysztof Ciesielski |
title_fullStr | Set theory for the working mathematician Krzysztof Ciesielski |
title_full_unstemmed | Set theory for the working mathematician Krzysztof Ciesielski |
title_short | Set theory for the working mathematician |
title_sort | set theory for the working mathematician |
topic | TEORIA DOS CONJUNTOS. larpcal Mengenlehre swd MATHEMATICS / Set Theory bisacsh Set theory fast Set theory Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | TEORIA DOS CONJUNTOS. Mengenlehre MATHEMATICS / Set Theory Set theory |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570383 |
work_keys_str_mv | AT ciesielskikrzysztof settheoryfortheworkingmathematician |