An Elementary Introduction to Queueing Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Preface; Chapter 1; Modeling of Queueing Systems; 1.1 Mathematical Modeling; 1.2 The Poisson Input Process; 1.3 Superposition of Independent Poisson Processes; 1.4 Decomposition of a Poisson Process; 1.5 The Exponential Interarrival Time Distribution; 1.6 The Markov Property or Memoryless Property; 1.7 Relationship Between the Poisson Distribution and the Exponential Distribution; 1.8 The Service Time Distribution; 1.9 The Residual Service Time Distribution; 1.10 The Birth and Death Process; 1.11 The Outside Observer's Distribution and the Arriving Customer's Distribution; Review Chapter 2Queueing Systems with Losses; 2.1 Introduction; 2.2 The Erlang Loss System; 2.3 The Erlang Loss Formula; Review; Chapter 3; Queueing Systems Allowing Waiting; 3.1 Introduction; 3.2 The Erlang Delay System; 3.3 The Distribution Function of the Waiting Time; 3.4 Little's Formula; Review; Chapter 4; The Engset Loss and Delay Systems; 4.1 Introduction; 4.2 The Engset Loss System; 4.3 The Arriving Customer's Distribution for the Engset Loss System; 4.4 The Offered Load and Carried Load in the Engset Loss System; 4.5 The Engset Delay System 4.6 The Waiting Time Distribution Function for the Engset Delay System4.7 The Mean Waiting Time in the Engset Delay System; 4.8 The Offered Load and Carried Load in the Engset Delay System; Review; Chapter 5; Queueing Systems with a Single Server; 5.1 Introduction; 5.2 The M/M/1 Queue; 5.3 The M/G/1 Queue and the Pollaczek-Khinchin Formula for the Mean Waiting Time; 5.4 The M/G/1 Queue with Vacations; 5.5 The M/G/1 Queue with Priority Discipline; (A) The HOL Non-Preemptive Priority System; (B) The Preemptive Priority System; 5.6 The GI/M/1 Queue (A) The Probability of Waiting and the Mean Waiting Time(B) The Waiting Time Distribution Function; Review; Bibliography; Index The book aims to highlight the fundamental concepts of queueing systems. It starts with the mathematical modeling of the arrival process (input) of customers to the system. It is shown that the arrival process can be described mathematically either by the number of arrival customers in a fixed time interval, or by the interarrival time between two consecutive arrivals. In the analysis of queueing systems, the book emphasizes the importance of exponential service time of customers. With this assumption of exponential service time, the analysis can be simplified by using the birth and death proc Includes bibliographical references (p. 99-100) and index |
Beschreibung: | 1 Online-Ressource (116 pages) |
ISBN: | 9789814612005 9789814612012 9814612014 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043059968 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814612005 |9 978-981-4612-00-5 | ||
020 | |a 9789814612012 |9 978-981-4612-01-2 | ||
020 | |a 9814612014 |9 981-4612-01-4 | ||
035 | |a (OCoLC)883570514 | ||
035 | |a (DE-599)BVBBV043059968 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.82 | |
082 | 0 | |a 519.8 | |
100 | 1 | |a Chan, Wah Chun |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Elementary Introduction to Queueing Systems |
264 | 1 | |a Singapore |b World Scientific Publishing Company |c 2014 | |
300 | |a 1 Online-Ressource (116 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Preface; Chapter 1; Modeling of Queueing Systems; 1.1 Mathematical Modeling; 1.2 The Poisson Input Process; 1.3 Superposition of Independent Poisson Processes; 1.4 Decomposition of a Poisson Process; 1.5 The Exponential Interarrival Time Distribution; 1.6 The Markov Property or Memoryless Property; 1.7 Relationship Between the Poisson Distribution and the Exponential Distribution; 1.8 The Service Time Distribution; 1.9 The Residual Service Time Distribution; 1.10 The Birth and Death Process; 1.11 The Outside Observer's Distribution and the Arriving Customer's Distribution; Review | ||
500 | |a Chapter 2Queueing Systems with Losses; 2.1 Introduction; 2.2 The Erlang Loss System; 2.3 The Erlang Loss Formula; Review; Chapter 3; Queueing Systems Allowing Waiting; 3.1 Introduction; 3.2 The Erlang Delay System; 3.3 The Distribution Function of the Waiting Time; 3.4 Little's Formula; Review; Chapter 4; The Engset Loss and Delay Systems; 4.1 Introduction; 4.2 The Engset Loss System; 4.3 The Arriving Customer's Distribution for the Engset Loss System; 4.4 The Offered Load and Carried Load in the Engset Loss System; 4.5 The Engset Delay System | ||
500 | |a 4.6 The Waiting Time Distribution Function for the Engset Delay System4.7 The Mean Waiting Time in the Engset Delay System; 4.8 The Offered Load and Carried Load in the Engset Delay System; Review; Chapter 5; Queueing Systems with a Single Server; 5.1 Introduction; 5.2 The M/M/1 Queue; 5.3 The M/G/1 Queue and the Pollaczek-Khinchin Formula for the Mean Waiting Time; 5.4 The M/G/1 Queue with Vacations; 5.5 The M/G/1 Queue with Priority Discipline; (A) The HOL Non-Preemptive Priority System; (B) The Preemptive Priority System; 5.6 The GI/M/1 Queue | ||
500 | |a (A) The Probability of Waiting and the Mean Waiting Time(B) The Waiting Time Distribution Function; Review; Bibliography; Index | ||
500 | |a The book aims to highlight the fundamental concepts of queueing systems. It starts with the mathematical modeling of the arrival process (input) of customers to the system. It is shown that the arrival process can be described mathematically either by the number of arrival customers in a fixed time interval, or by the interarrival time between two consecutive arrivals. In the analysis of queueing systems, the book emphasizes the importance of exponential service time of customers. With this assumption of exponential service time, the analysis can be simplified by using the birth and death proc | ||
500 | |a Includes bibliographical references (p. 99-100) and index | ||
650 | 4 | |a Computer network protocols / Standards | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Queuing theory | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Distribution (Probability theory) |2 fast | |
650 | 7 | |a Queuing theory |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Queuing theory |x Mathematical models | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028484160 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175434110205953 |
---|---|
any_adam_object | |
author | Chan, Wah Chun |
author_facet | Chan, Wah Chun |
author_role | aut |
author_sort | Chan, Wah Chun |
author_variant | w c c wc wcc |
building | Verbundindex |
bvnumber | BV043059968 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)883570514 (DE-599)BVBBV043059968 |
dewey-full | 519.82 519.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.82 519.8 |
dewey-search | 519.82 519.8 |
dewey-sort | 3519.82 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04366nmm a2200529zc 4500</leader><controlfield tag="001">BV043059968</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814612005</subfield><subfield code="9">978-981-4612-00-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814612012</subfield><subfield code="9">978-981-4612-01-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814612014</subfield><subfield code="9">981-4612-01-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)883570514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043059968</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.82</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.8</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chan, Wah Chun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Elementary Introduction to Queueing Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (116 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Chapter 1; Modeling of Queueing Systems; 1.1 Mathematical Modeling; 1.2 The Poisson Input Process; 1.3 Superposition of Independent Poisson Processes; 1.4 Decomposition of a Poisson Process; 1.5 The Exponential Interarrival Time Distribution; 1.6 The Markov Property or Memoryless Property; 1.7 Relationship Between the Poisson Distribution and the Exponential Distribution; 1.8 The Service Time Distribution; 1.9 The Residual Service Time Distribution; 1.10 The Birth and Death Process; 1.11 The Outside Observer's Distribution and the Arriving Customer's Distribution; Review</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 2Queueing Systems with Losses; 2.1 Introduction; 2.2 The Erlang Loss System; 2.3 The Erlang Loss Formula; Review; Chapter 3; Queueing Systems Allowing Waiting; 3.1 Introduction; 3.2 The Erlang Delay System; 3.3 The Distribution Function of the Waiting Time; 3.4 Little's Formula; Review; Chapter 4; The Engset Loss and Delay Systems; 4.1 Introduction; 4.2 The Engset Loss System; 4.3 The Arriving Customer's Distribution for the Engset Loss System; 4.4 The Offered Load and Carried Load in the Engset Loss System; 4.5 The Engset Delay System</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.6 The Waiting Time Distribution Function for the Engset Delay System4.7 The Mean Waiting Time in the Engset Delay System; 4.8 The Offered Load and Carried Load in the Engset Delay System; Review; Chapter 5; Queueing Systems with a Single Server; 5.1 Introduction; 5.2 The M/M/1 Queue; 5.3 The M/G/1 Queue and the Pollaczek-Khinchin Formula for the Mean Waiting Time; 5.4 The M/G/1 Queue with Vacations; 5.5 The M/G/1 Queue with Priority Discipline; (A) The HOL Non-Preemptive Priority System; (B) The Preemptive Priority System; 5.6 The GI/M/1 Queue</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">(A) The Probability of Waiting and the Mean Waiting Time(B) The Waiting Time Distribution Function; Review; Bibliography; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book aims to highlight the fundamental concepts of queueing systems. It starts with the mathematical modeling of the arrival process (input) of customers to the system. It is shown that the arrival process can be described mathematically either by the number of arrival customers in a fixed time interval, or by the interarrival time between two consecutive arrivals. In the analysis of queueing systems, the book emphasizes the importance of exponential service time of customers. With this assumption of exponential service time, the analysis can be simplified by using the birth and death proc</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 99-100) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer network protocols / Standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distribution (Probability theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Queuing theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing theory</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028484160</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043059968 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:13Z |
institution | BVB |
isbn | 9789814612005 9789814612012 9814612014 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028484160 |
oclc_num | 883570514 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (116 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Publishing Company |
record_format | marc |
spelling | Chan, Wah Chun Verfasser aut An Elementary Introduction to Queueing Systems Singapore World Scientific Publishing Company 2014 1 Online-Ressource (116 pages) txt rdacontent c rdamedia cr rdacarrier Preface; Chapter 1; Modeling of Queueing Systems; 1.1 Mathematical Modeling; 1.2 The Poisson Input Process; 1.3 Superposition of Independent Poisson Processes; 1.4 Decomposition of a Poisson Process; 1.5 The Exponential Interarrival Time Distribution; 1.6 The Markov Property or Memoryless Property; 1.7 Relationship Between the Poisson Distribution and the Exponential Distribution; 1.8 The Service Time Distribution; 1.9 The Residual Service Time Distribution; 1.10 The Birth and Death Process; 1.11 The Outside Observer's Distribution and the Arriving Customer's Distribution; Review Chapter 2Queueing Systems with Losses; 2.1 Introduction; 2.2 The Erlang Loss System; 2.3 The Erlang Loss Formula; Review; Chapter 3; Queueing Systems Allowing Waiting; 3.1 Introduction; 3.2 The Erlang Delay System; 3.3 The Distribution Function of the Waiting Time; 3.4 Little's Formula; Review; Chapter 4; The Engset Loss and Delay Systems; 4.1 Introduction; 4.2 The Engset Loss System; 4.3 The Arriving Customer's Distribution for the Engset Loss System; 4.4 The Offered Load and Carried Load in the Engset Loss System; 4.5 The Engset Delay System 4.6 The Waiting Time Distribution Function for the Engset Delay System4.7 The Mean Waiting Time in the Engset Delay System; 4.8 The Offered Load and Carried Load in the Engset Delay System; Review; Chapter 5; Queueing Systems with a Single Server; 5.1 Introduction; 5.2 The M/M/1 Queue; 5.3 The M/G/1 Queue and the Pollaczek-Khinchin Formula for the Mean Waiting Time; 5.4 The M/G/1 Queue with Vacations; 5.5 The M/G/1 Queue with Priority Discipline; (A) The HOL Non-Preemptive Priority System; (B) The Preemptive Priority System; 5.6 The GI/M/1 Queue (A) The Probability of Waiting and the Mean Waiting Time(B) The Waiting Time Distribution Function; Review; Bibliography; Index The book aims to highlight the fundamental concepts of queueing systems. It starts with the mathematical modeling of the arrival process (input) of customers to the system. It is shown that the arrival process can be described mathematically either by the number of arrival customers in a fixed time interval, or by the interarrival time between two consecutive arrivals. In the analysis of queueing systems, the book emphasizes the importance of exponential service time of customers. With this assumption of exponential service time, the analysis can be simplified by using the birth and death proc Includes bibliographical references (p. 99-100) and index Computer network protocols / Standards Mathematical models Queuing theory MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Distribution (Probability theory) fast Queuing theory fast Mathematisches Modell Queuing theory Mathematical models http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382 Aggregator Volltext |
spellingShingle | Chan, Wah Chun An Elementary Introduction to Queueing Systems Computer network protocols / Standards Mathematical models Queuing theory MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Distribution (Probability theory) fast Queuing theory fast Mathematisches Modell Queuing theory Mathematical models |
title | An Elementary Introduction to Queueing Systems |
title_auth | An Elementary Introduction to Queueing Systems |
title_exact_search | An Elementary Introduction to Queueing Systems |
title_full | An Elementary Introduction to Queueing Systems |
title_fullStr | An Elementary Introduction to Queueing Systems |
title_full_unstemmed | An Elementary Introduction to Queueing Systems |
title_short | An Elementary Introduction to Queueing Systems |
title_sort | an elementary introduction to queueing systems |
topic | Computer network protocols / Standards Mathematical models Queuing theory MATHEMATICS / Applied bisacsh MATHEMATICS / Probability & Statistics / General bisacsh Distribution (Probability theory) fast Queuing theory fast Mathematisches Modell Queuing theory Mathematical models |
topic_facet | Computer network protocols / Standards Mathematical models Queuing theory MATHEMATICS / Applied MATHEMATICS / Probability & Statistics / General Distribution (Probability theory) Mathematisches Modell Queuing theory Mathematical models |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=810382 |
work_keys_str_mv | AT chanwahchun anelementaryintroductiontoqueueingsystems |