Impossible?: surprising solutions to counterintuitive conundrums
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and index It's common knowledge -- Simpson's paradox -- The impossible problem -- Braess' paradox -- The power of complex numbers -- Bucking the odds -- Cantor's paradise -- Gamow-Stern elevators -- The toss of a coin -- Wild-card poker -- Two series -- Two card tricks -- The spin of a needle -- The best choice -- The power of powers -- Benford's law -- Goodstein sequences -- The Banach-Tarski paradox In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal a |
Beschreibung: | 1 Online-Ressource (xii, 235 pages) |
ISBN: | 0691131317 0691150028 1400829674 9780691131313 9780691150024 9781400829675 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043059268 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 0691131317 |9 0-691-13131-7 | ||
020 | |a 0691150028 |9 0-691-15002-8 | ||
020 | |a 1400829674 |c electronic bk. |9 1-4008-2967-4 | ||
020 | |a 9780691131313 |9 978-0-691-13131-3 | ||
020 | |a 9780691150024 |9 978-0-691-15002-4 | ||
020 | |a 9781400829675 |c electronic bk. |9 978-1-4008-2967-5 | ||
035 | |a (OCoLC)438189939 | ||
035 | |a (DE-599)BVBBV043059268 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 510 |2 22 | |
100 | 1 | |a Havil, Julian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Impossible? |b surprising solutions to counterintuitive conundrums |c Julian Havil |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©2008 | |
300 | |a 1 Online-Ressource (xii, 235 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a It's common knowledge -- Simpson's paradox -- The impossible problem -- Braess' paradox -- The power of complex numbers -- Bucking the odds -- Cantor's paradise -- Gamow-Stern elevators -- The toss of a coin -- Wild-card poker -- Two series -- Two card tricks -- The spin of a needle -- The best choice -- The power of powers -- Benford's law -- Goodstein sequences -- The Banach-Tarski paradox | ||
500 | |a In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal a | ||
650 | 4 | |a Mathematics / Miscellanea | |
650 | 4 | |a Paradox / Mathematics | |
650 | 4 | |a Problem solving / Miscellanea | |
650 | 7 | |a MATHEMATICS / Pre-Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Reference |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Essays |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics |v Miscellanea | |
650 | 4 | |a Paradox |x Mathematics | |
650 | 4 | |a Problem solving |x Miscellanea | |
650 | 0 | 7 | |a Paradoxon |0 (DE-588)4044593-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Problem |0 (DE-588)4114530-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4144384-6 |a Beispielsammlung |2 gnd-content | |
689 | 0 | 0 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |D s |
689 | 0 | 1 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Mathematisches Problem |0 (DE-588)4114530-6 |D s |
689 | 2 | 1 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028483460 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175432985083904 |
---|---|
any_adam_object | |
author | Havil, Julian |
author_facet | Havil, Julian |
author_role | aut |
author_sort | Havil, Julian |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV043059268 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)438189939 (DE-599)BVBBV043059268 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04239nmm a2200769zc 4500</leader><controlfield tag="001">BV043059268</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691131317</subfield><subfield code="9">0-691-13131-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691150028</subfield><subfield code="9">0-691-15002-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400829674</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-2967-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691131313</subfield><subfield code="9">978-0-691-13131-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691150024</subfield><subfield code="9">978-0-691-15002-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400829675</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-2967-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)438189939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043059268</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havil, Julian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impossible?</subfield><subfield code="b">surprising solutions to counterintuitive conundrums</subfield><subfield code="c">Julian Havil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 235 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It's common knowledge -- Simpson's paradox -- The impossible problem -- Braess' paradox -- The power of complex numbers -- Bucking the odds -- Cantor's paradise -- Gamow-Stern elevators -- The toss of a coin -- Wild-card poker -- Two series -- Two card tricks -- The spin of a needle -- The best choice -- The power of powers -- Benford's law -- Goodstein sequences -- The Banach-Tarski paradox</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Miscellanea</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paradox / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problem solving / Miscellanea</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="v">Miscellanea</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paradox</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problem solving</subfield><subfield code="x">Miscellanea</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028483460</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4144384-6 Beispielsammlung gnd-content |
genre_facet | Beispielsammlung |
id | DE-604.BV043059268 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:12Z |
institution | BVB |
isbn | 0691131317 0691150028 1400829674 9780691131313 9780691150024 9781400829675 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028483460 |
oclc_num | 438189939 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 235 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press |
record_format | marc |
spelling | Havil, Julian Verfasser aut Impossible? surprising solutions to counterintuitive conundrums Julian Havil Princeton, N.J. Princeton University Press ©2008 1 Online-Ressource (xii, 235 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index It's common knowledge -- Simpson's paradox -- The impossible problem -- Braess' paradox -- The power of complex numbers -- Bucking the odds -- Cantor's paradise -- Gamow-Stern elevators -- The toss of a coin -- Wild-card poker -- Two series -- Two card tricks -- The spin of a needle -- The best choice -- The power of powers -- Benford's law -- Goodstein sequences -- The Banach-Tarski paradox In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal a Mathematics / Miscellanea Paradox / Mathematics Problem solving / Miscellanea MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh MATHEMATICS / Applied bisacsh Mathematik Mathematics Miscellanea Paradox Mathematics Problem solving Miscellanea Paradoxon (DE-588)4044593-8 gnd rswk-swf Mathematisches Problem (DE-588)4114530-6 gnd rswk-swf Unterhaltungsmathematik (DE-588)4124357-2 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf 1\p (DE-588)4144384-6 Beispielsammlung gnd-content Unterhaltungsmathematik (DE-588)4124357-2 s Paradoxon (DE-588)4044593-8 s 2\p DE-604 Mathematik (DE-588)4037944-9 s 3\p DE-604 Mathematisches Problem (DE-588)4114530-6 s Beweis (DE-588)4132532-1 s 4\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Havil, Julian Impossible? surprising solutions to counterintuitive conundrums Mathematics / Miscellanea Paradox / Mathematics Problem solving / Miscellanea MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh MATHEMATICS / Applied bisacsh Mathematik Mathematics Miscellanea Paradox Mathematics Problem solving Miscellanea Paradoxon (DE-588)4044593-8 gnd Mathematisches Problem (DE-588)4114530-6 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd Beweis (DE-588)4132532-1 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4044593-8 (DE-588)4114530-6 (DE-588)4124357-2 (DE-588)4132532-1 (DE-588)4037944-9 (DE-588)4144384-6 |
title | Impossible? surprising solutions to counterintuitive conundrums |
title_auth | Impossible? surprising solutions to counterintuitive conundrums |
title_exact_search | Impossible? surprising solutions to counterintuitive conundrums |
title_full | Impossible? surprising solutions to counterintuitive conundrums Julian Havil |
title_fullStr | Impossible? surprising solutions to counterintuitive conundrums Julian Havil |
title_full_unstemmed | Impossible? surprising solutions to counterintuitive conundrums Julian Havil |
title_short | Impossible? |
title_sort | impossible surprising solutions to counterintuitive conundrums |
title_sub | surprising solutions to counterintuitive conundrums |
topic | Mathematics / Miscellanea Paradox / Mathematics Problem solving / Miscellanea MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh MATHEMATICS / Applied bisacsh Mathematik Mathematics Miscellanea Paradox Mathematics Problem solving Miscellanea Paradoxon (DE-588)4044593-8 gnd Mathematisches Problem (DE-588)4114530-6 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd Beweis (DE-588)4132532-1 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematics / Miscellanea Paradox / Mathematics Problem solving / Miscellanea MATHEMATICS / Pre-Calculus MATHEMATICS / Reference MATHEMATICS / Essays MATHEMATICS / Applied Mathematik Mathematics Miscellanea Paradox Mathematics Problem solving Miscellanea Paradoxon Mathematisches Problem Unterhaltungsmathematik Beweis Beispielsammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=286596 |
work_keys_str_mv | AT haviljulian impossiblesurprisingsolutionstocounterintuitiveconundrums |