The geometry and topology of coxeter groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
c2008
|
Schriftenreihe: | London Mathematical Society monographs
new ser., no. 32 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Series numbering from spine Includes bibliographical references (p. [555]-572) and index "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--BOOK JACKET. |
Beschreibung: | 1 Online-Ressource (xiv, 584 p.) |
ISBN: | 0691131384 1400845947 9780691131382 9781400845941 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043057793 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 0691131384 |9 0-691-13138-4 | ||
020 | |a 1400845947 |c electronic bk. |9 1-4008-4594-7 | ||
020 | |a 9780691131382 |9 978-0-691-13138-2 | ||
020 | |a 9781400845941 |c electronic bk. |9 978-1-4008-4594-1 | ||
035 | |a (OCoLC)823170151 | ||
035 | |a (DE-599)BVBBV043057793 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.2 |2 22 | |
100 | 1 | |a Davis, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a The geometry and topology of coxeter groups |c Michael W. Davis |
264 | 1 | |a Princeton |b Princeton University Press |c c2008 | |
300 | |a 1 Online-Ressource (xiv, 584 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society monographs |v new ser., no. 32 | |
500 | |a Series numbering from spine | ||
500 | |a Includes bibliographical references (p. [555]-572) and index | ||
500 | |a "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--BOOK JACKET. | ||
650 | 7 | |a Coxeter-Gruppe |2 swd | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Coxeter groups |2 fast | |
650 | 7 | |a Geometric group theory |2 fast | |
650 | 4 | |a Coxeter groups | |
650 | 4 | |a Geometric group theory | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |D s |
689 | 0 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |D s |
689 | 1 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028481985 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175430580699136 |
---|---|
any_adam_object | |
author | Davis, Michael |
author_facet | Davis, Michael |
author_role | aut |
author_sort | Davis, Michael |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043057793 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)823170151 (DE-599)BVBBV043057793 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03085nmm a2200613zcb4500</leader><controlfield tag="001">BV043057793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691131384</subfield><subfield code="9">0-691-13138-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400845947</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4594-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691131382</subfield><subfield code="9">978-0-691-13138-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400845941</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4594-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823170151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043057793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry and topology of coxeter groups</subfield><subfield code="c">Michael W. Davis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 584 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society monographs</subfield><subfield code="v">new ser., no. 32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Series numbering from spine</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [555]-572) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coxeter groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coxeter groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028481985</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043057793 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:10Z |
institution | BVB |
isbn | 0691131384 1400845947 9780691131382 9781400845941 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028481985 |
oclc_num | 823170151 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 584 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press |
record_format | marc |
series2 | London Mathematical Society monographs |
spelling | Davis, Michael Verfasser aut The geometry and topology of coxeter groups Michael W. Davis Princeton Princeton University Press c2008 1 Online-Ressource (xiv, 584 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society monographs new ser., no. 32 Series numbering from spine Includes bibliographical references (p. [555]-572) and index "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--BOOK JACKET. Coxeter-Gruppe swd MATHEMATICS / Group Theory bisacsh MATHEMATICS / Geometry / General bisacsh Coxeter groups fast Geometric group theory fast Coxeter groups Geometric group theory Geometrie (DE-588)4020236-7 gnd rswk-swf Coxeter-Gruppe (DE-588)4261522-7 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Coxeter-Gruppe (DE-588)4261522-7 s Algebraische Topologie (DE-588)4120861-4 s 1\p DE-604 Geometrie (DE-588)4020236-7 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Davis, Michael The geometry and topology of coxeter groups Coxeter-Gruppe swd MATHEMATICS / Group Theory bisacsh MATHEMATICS / Geometry / General bisacsh Coxeter groups fast Geometric group theory fast Coxeter groups Geometric group theory Geometrie (DE-588)4020236-7 gnd Coxeter-Gruppe (DE-588)4261522-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4261522-7 (DE-588)4120861-4 |
title | The geometry and topology of coxeter groups |
title_auth | The geometry and topology of coxeter groups |
title_exact_search | The geometry and topology of coxeter groups |
title_full | The geometry and topology of coxeter groups Michael W. Davis |
title_fullStr | The geometry and topology of coxeter groups Michael W. Davis |
title_full_unstemmed | The geometry and topology of coxeter groups Michael W. Davis |
title_short | The geometry and topology of coxeter groups |
title_sort | the geometry and topology of coxeter groups |
topic | Coxeter-Gruppe swd MATHEMATICS / Group Theory bisacsh MATHEMATICS / Geometry / General bisacsh Coxeter groups fast Geometric group theory fast Coxeter groups Geometric group theory Geometrie (DE-588)4020236-7 gnd Coxeter-Gruppe (DE-588)4261522-7 gnd Algebraische Topologie (DE-588)4120861-4 gnd |
topic_facet | Coxeter-Gruppe MATHEMATICS / Group Theory MATHEMATICS / Geometry / General Coxeter groups Geometric group theory Geometrie Algebraische Topologie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=507379 |
work_keys_str_mv | AT davismichael thegeometryandtopologyofcoxetergroups |