Lectures on elliptic curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schriftenreihe: | London Mathematical Society student texts
24 |
Schlagworte: | |
Online-Zugang: | UBR01 Volltext |
Beschreibung: | Includes bibliographical references (p. [135]) and index 1 - Curves of genus 0. Introduction - 3 -- - 2 - p-adic numbers - 6 -- - 3 - Local-global principle for conics - 13 -- - 4 - Geometry of numbers - 17 -- - 5 - Local-global principle. Conclusion of proof - 20 -- - 6 - Cubic curves - 23 -- - 7 - Non-singular cubics. The group law - 27 -- - 8 - Elliptic curves. Canonical form - 32 -- - 9 - Degenerate laws - 39 -- - 10 - Reduction - 42 -- - 11 - P-adic case - 46 -- - 12 - Global torsion - 50 -- - 13 - Finite basis theorem. Strategy and comments - 54 -- - 14 - A 2-isogeny - 58 -- - 15 - Weak finite basis theory - 66 -- - 16 - Remedial mathematics. Resultants - 75 -- - 17 - Heights. Finite basis Theorem - 78 -- - 18 - Local-global for genus 1 - 85 -- - 19 - Elements of Galois cohomology - 89 -- - 20 - Construction of the jacobian - 92 -- - 21 - Some abstract nonsense - 98 -- - 22 - Principal homogeneous spaces and Galois cohomology - 104 -- - 23 - Tate-Shafarevich group - 108 -- - 24 - Endomorphism group - 114 -- - 25 - Points over finite fields - 118 -- - 26 - Factorizing using elliptic curves - 124 |
Beschreibung: | 1 Online-Ressource (vi, 137 p.) |
ISBN: | 9781107088290 1107088291 0521415179 9780521415170 0521425301 9780521425308 9781139172530 1139172530 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043057599 | ||
003 | DE-604 | ||
005 | 20200127 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781107088290 |c electronic bk. |9 978-1-107-08829-0 | ||
020 | |a 1107088291 |c electronic bk. |9 1-107-08829-1 | ||
020 | |a 0521415179 |9 0-521-41517-9 | ||
020 | |a 9780521415170 |9 978-0-521-41517-0 | ||
020 | |a 0521425301 |9 0-521-42530-1 | ||
020 | |a 9780521425308 |9 978-0-521-42530-8 | ||
020 | |a 9781139172530 |9 978-1-139-17253-0 | ||
020 | |a 1139172530 |c electronic bk. |9 1-139-17253-0 | ||
024 | 7 | |a 10.1017/CBO9781139172530 |2 doi | |
035 | |a (OCoLC)852899209 | ||
035 | |a (DE-599)BVBBV043057599 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-355 | ||
082 | 0 | |a 516.3/52 |2 22 | |
100 | 1 | |a Cassels, J. W. S., (John William Scott) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on elliptic curves |c J.W.S. Cassels |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 Online-Ressource (vi, 137 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 24 | |
500 | |a Includes bibliographical references (p. [135]) and index | ||
500 | |a 1 - Curves of genus 0. Introduction - 3 -- - 2 - p-adic numbers - 6 -- - 3 - Local-global principle for conics - 13 -- - 4 - Geometry of numbers - 17 -- - 5 - Local-global principle. Conclusion of proof - 20 -- - 6 - Cubic curves - 23 -- - 7 - Non-singular cubics. The group law - 27 -- - 8 - Elliptic curves. Canonical form - 32 -- - 9 - Degenerate laws - 39 -- - 10 - Reduction - 42 -- - 11 - P-adic case - 46 -- - 12 - Global torsion - 50 -- - 13 - Finite basis theorem. Strategy and comments - 54 -- - 14 - A 2-isogeny - 58 -- - 15 - Weak finite basis theory - 66 -- - 16 - Remedial mathematics. Resultants - 75 -- - 17 - Heights. Finite basis Theorem - 78 -- - 18 - Local-global for genus 1 - 85 -- - 19 - Elements of Galois cohomology - 89 -- - 20 - Construction of the jacobian - 92 -- - 21 - Some abstract nonsense - 98 -- - 22 - Principal homogeneous spaces and Galois cohomology - 104 -- - 23 - Tate-Shafarevich group - 108 -- - 24 - Endomorphism group - 114 -- - 25 - Points over finite fields - 118 -- - 26 - Factorizing using elliptic curves - 124 | ||
650 | 4 | |a géométrie nombres | |
650 | 4 | |a théorie nombre | |
650 | 4 | |a équation diophantienne | |
650 | 4 | |a courbe elliptique | |
650 | 7 | |a Elliptische functies |2 gtt | |
650 | 7 | |a Courbes elliptiques |2 ram | |
650 | 7 | |a Diophantische Gleichung |2 swd | |
650 | 7 | |a Elliptische Kurve |2 swd | |
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 7 | |a Curves, Elliptic |2 fast | |
650 | 4 | |a Curves, Elliptic | |
650 | 0 | 7 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 0 | 1 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570389 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA |a ZDB-20-CBO | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028481791 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172530 |l UBR01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175430252494848 |
---|---|
any_adam_object | |
author | Cassels, J. W. S., (John William Scott) |
author_facet | Cassels, J. W. S., (John William Scott) |
author_role | aut |
author_sort | Cassels, J. W. S., (John William Scott) |
author_variant | j w s j w s c jwsjws jwsjwsc |
building | Verbundindex |
bvnumber | BV043057599 |
collection | ZDB-4-EBA ZDB-20-CBO |
ctrlnum | (OCoLC)852899209 (DE-599)BVBBV043057599 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03531nmm a2200649zcb4500</leader><controlfield tag="001">BV043057599</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200127 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088290</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08829-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088291</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08829-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521415179</subfield><subfield code="9">0-521-41517-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521415170</subfield><subfield code="9">978-0-521-41517-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521425301</subfield><subfield code="9">0-521-42530-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521425308</subfield><subfield code="9">978-0-521-42530-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172530</subfield><subfield code="9">978-1-139-17253-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139172530</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-139-17253-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172530</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852899209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043057599</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cassels, J. W. S., (John William Scott)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on elliptic curves</subfield><subfield code="c">J.W.S. Cassels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 137 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">24</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [135]) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1 - Curves of genus 0. Introduction - 3 -- - 2 - p-adic numbers - 6 -- - 3 - Local-global principle for conics - 13 -- - 4 - Geometry of numbers - 17 -- - 5 - Local-global principle. Conclusion of proof - 20 -- - 6 - Cubic curves - 23 -- - 7 - Non-singular cubics. The group law - 27 -- - 8 - Elliptic curves. Canonical form - 32 -- - 9 - Degenerate laws - 39 -- - 10 - Reduction - 42 -- - 11 - P-adic case - 46 -- - 12 - Global torsion - 50 -- - 13 - Finite basis theorem. Strategy and comments - 54 -- - 14 - A 2-isogeny - 58 -- - 15 - Weak finite basis theory - 66 -- - 16 - Remedial mathematics. Resultants - 75 -- - 17 - Heights. Finite basis Theorem - 78 -- - 18 - Local-global for genus 1 - 85 -- - 19 - Elements of Galois cohomology - 89 -- - 20 - Construction of the jacobian - 92 -- - 21 - Some abstract nonsense - 98 -- - 22 - Principal homogeneous spaces and Galois cohomology - 104 -- - 23 - Tate-Shafarevich group - 108 -- - 24 - Endomorphism group - 114 -- - 25 - Points over finite fields - 118 -- - 26 - Factorizing using elliptic curves - 124</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">géométrie nombres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">théorie nombre</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">équation diophantienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">courbe elliptique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptische functies</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Courbes elliptiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Curves, Elliptic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Elliptic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570389</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028481791</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172530</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043057599 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:10Z |
institution | BVB |
isbn | 9781107088290 1107088291 0521415179 9780521415170 0521425301 9780521425308 9781139172530 1139172530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028481791 |
oclc_num | 852899209 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-355 DE-BY-UBR |
owner_facet | DE-1046 DE-1047 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (vi, 137 p.) |
psigel | ZDB-4-EBA ZDB-20-CBO FAW_PDA_EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Cassels, J. W. S., (John William Scott) Verfasser aut Lectures on elliptic curves J.W.S. Cassels Cambridge Cambridge University Press 1991 1 Online-Ressource (vi, 137 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 24 Includes bibliographical references (p. [135]) and index 1 - Curves of genus 0. Introduction - 3 -- - 2 - p-adic numbers - 6 -- - 3 - Local-global principle for conics - 13 -- - 4 - Geometry of numbers - 17 -- - 5 - Local-global principle. Conclusion of proof - 20 -- - 6 - Cubic curves - 23 -- - 7 - Non-singular cubics. The group law - 27 -- - 8 - Elliptic curves. Canonical form - 32 -- - 9 - Degenerate laws - 39 -- - 10 - Reduction - 42 -- - 11 - P-adic case - 46 -- - 12 - Global torsion - 50 -- - 13 - Finite basis theorem. Strategy and comments - 54 -- - 14 - A 2-isogeny - 58 -- - 15 - Weak finite basis theory - 66 -- - 16 - Remedial mathematics. Resultants - 75 -- - 17 - Heights. Finite basis Theorem - 78 -- - 18 - Local-global for genus 1 - 85 -- - 19 - Elements of Galois cohomology - 89 -- - 20 - Construction of the jacobian - 92 -- - 21 - Some abstract nonsense - 98 -- - 22 - Principal homogeneous spaces and Galois cohomology - 104 -- - 23 - Tate-Shafarevich group - 108 -- - 24 - Endomorphism group - 114 -- - 25 - Points over finite fields - 118 -- - 26 - Factorizing using elliptic curves - 124 géométrie nombres théorie nombre équation diophantienne courbe elliptique Elliptische functies gtt Courbes elliptiques ram Diophantische Gleichung swd Elliptische Kurve swd MATHEMATICS / Geometry / Algebraic bisacsh Curves, Elliptic fast Curves, Elliptic Diophantische Gleichung (DE-588)4012386-8 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 s Diophantische Gleichung (DE-588)4012386-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570389 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cassels, J. W. S., (John William Scott) Lectures on elliptic curves géométrie nombres théorie nombre équation diophantienne courbe elliptique Elliptische functies gtt Courbes elliptiques ram Diophantische Gleichung swd Elliptische Kurve swd MATHEMATICS / Geometry / Algebraic bisacsh Curves, Elliptic fast Curves, Elliptic Diophantische Gleichung (DE-588)4012386-8 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
subject_GND | (DE-588)4012386-8 (DE-588)4014487-2 |
title | Lectures on elliptic curves |
title_auth | Lectures on elliptic curves |
title_exact_search | Lectures on elliptic curves |
title_full | Lectures on elliptic curves J.W.S. Cassels |
title_fullStr | Lectures on elliptic curves J.W.S. Cassels |
title_full_unstemmed | Lectures on elliptic curves J.W.S. Cassels |
title_short | Lectures on elliptic curves |
title_sort | lectures on elliptic curves |
topic | géométrie nombres théorie nombre équation diophantienne courbe elliptique Elliptische functies gtt Courbes elliptiques ram Diophantische Gleichung swd Elliptische Kurve swd MATHEMATICS / Geometry / Algebraic bisacsh Curves, Elliptic fast Curves, Elliptic Diophantische Gleichung (DE-588)4012386-8 gnd Elliptische Kurve (DE-588)4014487-2 gnd |
topic_facet | géométrie nombres théorie nombre équation diophantienne courbe elliptique Elliptische functies Courbes elliptiques Diophantische Gleichung Elliptische Kurve MATHEMATICS / Geometry / Algebraic Curves, Elliptic |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=570389 |
work_keys_str_mv | AT casselsjwsjohnwilliamscott lecturesonellipticcurves |