Lie groups and lie algebras: a physicist's perspective
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | This text gives an introduction to group theory for physicists with a focus on lie groups and lie algebras Includes bibliographical references and index Generalities -- Lie groups and lie algebras -- Rotations : SO(3) and SU(2) -- Representations of SU(2) -- The so(n) algebra and Clifford numbers -- Reality properties of spinors -- Clebsch-Gordan series for spinors -- The center and outer automorphisms of Spin(n) -- Composition algebras -- The exceptional group G₂ -- Casimir operators for orthogonal groups -- Classical groups -- Unitary groups -- The symmetric group S[r subscript] and Young tableaux -- Reduction SU(n) tensors -- Cartan basis, simple roots and fundamental weights -- Cartan classification of semisimple algebras -- Dynkin diagrams -- The Lorentz group -- The Poincaré and Liouville groups -- The Coulomb problem in n space dimensions |
Beschreibung: | 1 Online-Ressource |
ISBN: | 0191640077 0191745499 1283634643 9780191640070 9780191745492 9781283634649 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043057074 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 0191640077 |c electronic bk. |9 0-19-164007-7 | ||
020 | |a 0191745499 |c ebook |9 0-19-174549-9 | ||
020 | |a 1283634643 |c MyiLibrary |9 1-283-63464-3 | ||
020 | |a 9780191640070 |c electronic bk. |9 978-0-19-164007-0 | ||
020 | |a 9780191745492 |c ebook |9 978-0-19-174549-2 | ||
020 | |a 9781283634649 |c MyiLibrary |9 978-1-283-63464-9 | ||
035 | |a (OCoLC)826068451 | ||
035 | |a (DE-599)BVBBV043057074 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.482 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Bincer, Adam M. , (Adam Marian) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie groups and lie algebras |b a physicist's perspective |c Adam M. Bincer |
264 | 1 | |a Oxford |b Oxford University Press |c 2013 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This text gives an introduction to group theory for physicists with a focus on lie groups and lie algebras | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Generalities -- Lie groups and lie algebras -- Rotations : SO(3) and SU(2) -- Representations of SU(2) -- The so(n) algebra and Clifford numbers -- Reality properties of spinors -- Clebsch-Gordan series for spinors -- The center and outer automorphisms of Spin(n) -- Composition algebras -- The exceptional group G₂ -- Casimir operators for orthogonal groups -- Classical groups -- Unitary groups -- The symmetric group S[r subscript] and Young tableaux -- Reduction SU(n) tensors -- Cartan basis, simple roots and fundamental weights -- Cartan classification of semisimple algebras -- Dynkin diagrams -- The Lorentz group -- The Poincaré and Liouville groups -- The Coulomb problem in n space dimensions | ||
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Lie algebras | |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 2 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | 3 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-19-966292-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-19-966292-0 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028481266 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175429379031040 |
---|---|
any_adam_object | |
author | Bincer, Adam M. , (Adam Marian) |
author_facet | Bincer, Adam M. , (Adam Marian) |
author_role | aut |
author_sort | Bincer, Adam M. , (Adam Marian) |
author_variant | a m a m b amam amamb |
building | Verbundindex |
bvnumber | BV043057074 |
classification_rvk | SK 340 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)826068451 (DE-599)BVBBV043057074 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03476nmm a2200625zc 4500</leader><controlfield tag="001">BV043057074</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191640077</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-19-164007-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191745499</subfield><subfield code="c">ebook</subfield><subfield code="9">0-19-174549-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283634643</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">1-283-63464-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191640070</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-19-164007-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191745492</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-19-174549-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283634649</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">978-1-283-63464-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826068451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043057074</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bincer, Adam M. , (Adam Marian)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups and lie algebras</subfield><subfield code="b">a physicist's perspective</subfield><subfield code="c">Adam M. Bincer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text gives an introduction to group theory for physicists with a focus on lie groups and lie algebras</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Generalities -- Lie groups and lie algebras -- Rotations : SO(3) and SU(2) -- Representations of SU(2) -- The so(n) algebra and Clifford numbers -- Reality properties of spinors -- Clebsch-Gordan series for spinors -- The center and outer automorphisms of Spin(n) -- Composition algebras -- The exceptional group G₂ -- Casimir operators for orthogonal groups -- Classical groups -- Unitary groups -- The symmetric group S[r subscript] and Young tableaux -- Reduction SU(n) tensors -- Cartan basis, simple roots and fundamental weights -- Cartan classification of semisimple algebras -- Dynkin diagrams -- The Lorentz group -- The Poincaré and Liouville groups -- The Coulomb problem in n space dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-19-966292-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-19-966292-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028481266</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043057074 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:09Z |
institution | BVB |
isbn | 0191640077 0191745499 1283634643 9780191640070 9780191745492 9781283634649 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028481266 |
oclc_num | 826068451 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press |
record_format | marc |
spelling | Bincer, Adam M. , (Adam Marian) Verfasser aut Lie groups and lie algebras a physicist's perspective Adam M. Bincer Oxford Oxford University Press 2013 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier This text gives an introduction to group theory for physicists with a focus on lie groups and lie algebras Includes bibliographical references and index Generalities -- Lie groups and lie algebras -- Rotations : SO(3) and SU(2) -- Representations of SU(2) -- The so(n) algebra and Clifford numbers -- Reality properties of spinors -- Clebsch-Gordan series for spinors -- The center and outer automorphisms of Spin(n) -- Composition algebras -- The exceptional group G₂ -- Casimir operators for orthogonal groups -- Classical groups -- Unitary groups -- The symmetric group S[r subscript] and Young tableaux -- Reduction SU(n) tensors -- Cartan basis, simple roots and fundamental weights -- Cartan classification of semisimple algebras -- Dynkin diagrams -- The Lorentz group -- The Poincaré and Liouville groups -- The Coulomb problem in n space dimensions Lie algebras fast Lie groups fast MATHEMATICS / Algebra / Intermediate bisacsh Lie groups Lie algebras Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Lie-Algebra (DE-588)4130355-6 s Darstellung Mathematik (DE-588)4128289-9 s Lineare algebraische Gruppe (DE-588)4295326-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 0-19-966292-4 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-19-966292-0 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bincer, Adam M. , (Adam Marian) Lie groups and lie algebras a physicist's perspective Lie algebras fast Lie groups fast MATHEMATICS / Algebra / Intermediate bisacsh Lie groups Lie algebras Darstellung Mathematik (DE-588)4128289-9 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4128289-9 (DE-588)4295326-1 (DE-588)4035695-4 (DE-588)4130355-6 |
title | Lie groups and lie algebras a physicist's perspective |
title_auth | Lie groups and lie algebras a physicist's perspective |
title_exact_search | Lie groups and lie algebras a physicist's perspective |
title_full | Lie groups and lie algebras a physicist's perspective Adam M. Bincer |
title_fullStr | Lie groups and lie algebras a physicist's perspective Adam M. Bincer |
title_full_unstemmed | Lie groups and lie algebras a physicist's perspective Adam M. Bincer |
title_short | Lie groups and lie algebras |
title_sort | lie groups and lie algebras a physicist s perspective |
title_sub | a physicist's perspective |
topic | Lie algebras fast Lie groups fast MATHEMATICS / Algebra / Intermediate bisacsh Lie groups Lie algebras Darstellung Mathematik (DE-588)4128289-9 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Lie algebras Lie groups MATHEMATICS / Algebra / Intermediate Darstellung Mathematik Lineare algebraische Gruppe Lie-Gruppe Lie-Algebra |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=488572 |
work_keys_str_mv | AT binceradammadammarian liegroupsandliealgebrasaphysicistsperspective |