Chaos in ecology: experimental nonlinear dynamics
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
Boston
c2003
|
Schriftenreihe: | Theoretical ecology series
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat reader. - Mode of access: World Wide Web It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results. Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations. It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results. This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm). Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations Introduction. -- Models. -- Bifurcations. -- Chaos. -- Patterns in Chaos. -- What We Learned. -- Bibliography. -- Appendix Includes bibliographical references (p. 183-193) |
Beschreibung: | 1 Online-Ressource (xiv, 225 p.) |
ISBN: | 0080528872 0121988767 9780080528878 9780121988760 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043044569 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151123s2003 |||| o||u| ||||||eng d | ||
020 | |a 0080528872 |c electronic bk. |9 0-08-052887-2 | ||
020 | |a 0121988767 |9 0-12-198876-7 | ||
020 | |a 9780080528878 |c electronic bk. |9 978-0-08-052887-8 | ||
020 | |a 9780121988760 |9 978-0-12-198876-0 | ||
035 | |a (OCoLC)162129542 | ||
035 | |a (DE-599)BVBBV043044569 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 577/.01/5118 |2 22 | |
245 | 1 | 0 | |a Chaos in ecology |b experimental nonlinear dynamics |c J.M. Cushing ... [et al.] |
264 | 1 | |a Amsterdam |b Boston |c c2003 | |
300 | |a 1 Online-Ressource (xiv, 225 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Theoretical ecology series | |
500 | |a System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat reader. - Mode of access: World Wide Web | ||
500 | |a It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results. Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations. It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results. This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm). Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations | ||
500 | |a Introduction. -- Models. -- Bifurcations. -- Chaos. -- Patterns in Chaos. -- What We Learned. -- Bibliography. -- Appendix | ||
500 | |a Includes bibliographical references (p. 183-193) | ||
650 | 4 | |a Écologie / Modèles mathématiques | |
650 | 4 | |a Biologie des populations / Modèles mathématiques | |
650 | 4 | |a Chaos | |
650 | 4 | |a Théories non linéaires | |
650 | 7 | |a Chaos |2 gtt | |
650 | 7 | |a Populatiedynamica |2 gtt | |
650 | 7 | |a Wiskundige modellen |2 gtt | |
650 | 7 | |a Caos (sistemas dinâmicos) |2 larpcal | |
650 | 7 | |a Ecologia de populações |2 larpcal | |
650 | 7 | |a Modelos matemáticos |2 larpcal | |
650 | 7 | |a SCIENCE / Environmental Science (see also Chemistry / Environmental) |2 bisacsh | |
650 | 7 | |a NATURE / Ecosystems & Habitats / Wilderness |2 bisacsh | |
650 | 7 | |a NATURE / Ecology |2 bisacsh | |
650 | 7 | |a SCIENCE / Life Sciences / Ecology |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Ecology / Mathematical models |2 fast | |
650 | 7 | |a Nonlinear theories |2 fast | |
650 | 7 | |a Population biology / Mathematical models |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Ökologie | |
650 | 4 | |a Ecology |x Mathematical models | |
650 | 4 | |a Population biology |x Mathematical models | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Nonlinear theories | |
650 | 0 | 7 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökologie |0 (DE-588)4043207-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Populationsbiologie |0 (DE-588)4046800-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökologie |0 (DE-588)4043207-5 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 2 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 3 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Populationsbiologie |0 (DE-588)4046800-8 |D s |
689 | 1 | 1 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 1 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | 3 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Cushing, J. M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028469106 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175410537168896 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043044569 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)162129542 (DE-599)BVBBV043044569 |
dewey-full | 577/.01/5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577/.01/5118 |
dewey-search | 577/.01/5118 |
dewey-sort | 3577 11 45118 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05747nmm a2200901zc 4500</leader><controlfield tag="001">BV043044569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151123s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080528872</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-052887-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0121988767</subfield><subfield code="9">0-12-198876-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080528878</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-052887-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780121988760</subfield><subfield code="9">978-0-12-198876-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162129542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043044569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577/.01/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaos in ecology</subfield><subfield code="b">experimental nonlinear dynamics</subfield><subfield code="c">J.M. Cushing ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Boston</subfield><subfield code="c">c2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 225 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Theoretical ecology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat reader. - Mode of access: World Wide Web</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results. Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations. It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results. This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm). Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction. -- Models. -- Bifurcations. -- Chaos. -- Patterns in Chaos. -- What We Learned. -- Bibliography. -- Appendix</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 183-193)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Écologie / Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biologie des populations / Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théories non linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaos</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Populatiedynamica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Caos (sistemas dinâmicos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ecologia de populações</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modelos matemáticos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Environmental Science (see also Chemistry / Environmental)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Ecosystems & Habitats / Wilderness</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Ecology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / Ecology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ecology / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear theories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Population biology / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population biology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökologie</subfield><subfield code="0">(DE-588)4043207-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsbiologie</subfield><subfield code="0">(DE-588)4046800-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökologie</subfield><subfield code="0">(DE-588)4043207-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Populationsbiologie</subfield><subfield code="0">(DE-588)4046800-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cushing, J. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028469106</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043044569 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:51Z |
institution | BVB |
isbn | 0080528872 0121988767 9780080528878 9780121988760 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028469106 |
oclc_num | 162129542 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 225 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Boston |
record_format | marc |
series2 | Theoretical ecology series |
spelling | Chaos in ecology experimental nonlinear dynamics J.M. Cushing ... [et al.] Amsterdam Boston c2003 1 Online-Ressource (xiv, 225 p.) txt rdacontent c rdamedia cr rdacarrier Theoretical ecology series System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat reader. - Mode of access: World Wide Web It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results. Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations. It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results. This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm). Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations Introduction. -- Models. -- Bifurcations. -- Chaos. -- Patterns in Chaos. -- What We Learned. -- Bibliography. -- Appendix Includes bibliographical references (p. 183-193) Écologie / Modèles mathématiques Biologie des populations / Modèles mathématiques Chaos Théories non linéaires Chaos gtt Populatiedynamica gtt Wiskundige modellen gtt Caos (sistemas dinâmicos) larpcal Ecologia de populações larpcal Modelos matemáticos larpcal SCIENCE / Environmental Science (see also Chemistry / Environmental) bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh NATURE / Ecology bisacsh SCIENCE / Life Sciences / Ecology bisacsh Chaotic behavior in systems fast Ecology / Mathematical models fast Nonlinear theories fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Ecology Mathematical models Population biology Mathematical models Chaotic behavior in systems Nonlinear theories Nichtlineare Theorie (DE-588)4251279-7 gnd rswk-swf Ökologie (DE-588)4043207-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Populationsbiologie (DE-588)4046800-8 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Ökologie (DE-588)4043207-5 s Mathematisches Modell (DE-588)4114528-8 s Chaotisches System (DE-588)4316104-2 s Nichtlineare Theorie (DE-588)4251279-7 s 1\p DE-604 Populationsbiologie (DE-588)4046800-8 s 2\p DE-604 Cushing, J. M. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chaos in ecology experimental nonlinear dynamics Écologie / Modèles mathématiques Biologie des populations / Modèles mathématiques Chaos Théories non linéaires Chaos gtt Populatiedynamica gtt Wiskundige modellen gtt Caos (sistemas dinâmicos) larpcal Ecologia de populações larpcal Modelos matemáticos larpcal SCIENCE / Environmental Science (see also Chemistry / Environmental) bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh NATURE / Ecology bisacsh SCIENCE / Life Sciences / Ecology bisacsh Chaotic behavior in systems fast Ecology / Mathematical models fast Nonlinear theories fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Ecology Mathematical models Population biology Mathematical models Chaotic behavior in systems Nonlinear theories Nichtlineare Theorie (DE-588)4251279-7 gnd Ökologie (DE-588)4043207-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Populationsbiologie (DE-588)4046800-8 gnd Chaotisches System (DE-588)4316104-2 gnd |
subject_GND | (DE-588)4251279-7 (DE-588)4043207-5 (DE-588)4114528-8 (DE-588)4046800-8 (DE-588)4316104-2 |
title | Chaos in ecology experimental nonlinear dynamics |
title_auth | Chaos in ecology experimental nonlinear dynamics |
title_exact_search | Chaos in ecology experimental nonlinear dynamics |
title_full | Chaos in ecology experimental nonlinear dynamics J.M. Cushing ... [et al.] |
title_fullStr | Chaos in ecology experimental nonlinear dynamics J.M. Cushing ... [et al.] |
title_full_unstemmed | Chaos in ecology experimental nonlinear dynamics J.M. Cushing ... [et al.] |
title_short | Chaos in ecology |
title_sort | chaos in ecology experimental nonlinear dynamics |
title_sub | experimental nonlinear dynamics |
topic | Écologie / Modèles mathématiques Biologie des populations / Modèles mathématiques Chaos Théories non linéaires Chaos gtt Populatiedynamica gtt Wiskundige modellen gtt Caos (sistemas dinâmicos) larpcal Ecologia de populações larpcal Modelos matemáticos larpcal SCIENCE / Environmental Science (see also Chemistry / Environmental) bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh NATURE / Ecology bisacsh SCIENCE / Life Sciences / Ecology bisacsh Chaotic behavior in systems fast Ecology / Mathematical models fast Nonlinear theories fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Ecology Mathematical models Population biology Mathematical models Chaotic behavior in systems Nonlinear theories Nichtlineare Theorie (DE-588)4251279-7 gnd Ökologie (DE-588)4043207-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Populationsbiologie (DE-588)4046800-8 gnd Chaotisches System (DE-588)4316104-2 gnd |
topic_facet | Écologie / Modèles mathématiques Biologie des populations / Modèles mathématiques Chaos Théories non linéaires Populatiedynamica Wiskundige modellen Caos (sistemas dinâmicos) Ecologia de populações Modelos matemáticos SCIENCE / Environmental Science (see also Chemistry / Environmental) NATURE / Ecosystems & Habitats / Wilderness NATURE / Ecology SCIENCE / Life Sciences / Ecology Chaotic behavior in systems Ecology / Mathematical models Nonlinear theories Population biology / Mathematical models Mathematisches Modell Ökologie Ecology Mathematical models Population biology Mathematical models Nichtlineare Theorie Populationsbiologie Chaotisches System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=199287 |
work_keys_str_mv | AT cushingjm chaosinecologyexperimentalnonlineardynamics |