Statistical parametric mapping: the analysis of funtional brain images
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier/Academic Press
2007
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. * An essential reference and companion for users of the SPM software * Provides a complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible INTRODUCTION -- A short history of SPM. -- Statistical parametric mapping. -- Modelling brain responses. -- SECTION 1: COMPUTATIONAL ANATOMY -- Rigid-body Registration. -- Nonlinear Registration. -- Segmentation. -- Voxel-based Morphometry. -- SECTION 2: GENERAL LINEAR MODELS -- The General Linear Model. -- Contrasts & Classical Inference. -- Covariance Components. -- Hierarchical models. -- Random Effects Analysis. -- Analysis of variance. -- Convolution models for fMRI. -- Efficient Experimental Design for fMRI. -- Hierarchical models for EEG/MEG. -- SECTION 3: CLASSICAL INFERENCE -- Parametric procedures for imaging. -- Random Field Theory & inference. -- Topological Inference. -- False discovery rate procedures. -- Non-parametric procedures. -- SECTION 4: BAYESIAN INFERENCE -- Empirical Bayes & hierarchical models. -- Posterior probability maps. -- Variational Bayes. -- Spatiotemporal models for fMRI. -- Spatiotemporal models for EEG. -- SECTION 5: BIOPHYSICAL MODELS -- Forward models for fMRI. -- Forward models for EEG and MEG. -- Bayesian inversion of EEG models. -- Bayesian inversion for induced responses. -- Neuronal models of ensemble dynamics. -- Neuronal models of energetics. -- Neuronal models of EEG and MEG. -- Bayesian inversion of dynamic models -- Bayesian model selection & averaging. -- SECTION 6: CONNECTIVITY -- Functional integration. -- Functional Connectivity. -- Effective Connectivity. -- Nonlinear coupling and Kernels. -- Multivariate autoregressive models. -- Dynamic Causal Models for fMRI. -- Dynamic Causal Models for EEG. -- Dynamic Causal Models & Bayesian selection. -- APPENDICES -- Linear models and inference. -- Dynamical systems. -- Expectation maximisation. -- Variational Bayes under the Laplace approximation. -- Kalman Filtering. -- Random Field Theory Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (vii, 647 pages) |
ISBN: | 0080466508 0123725607 9780080466507 9780123725608 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043044453 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151123s2007 |||| o||u| ||||||eng d | ||
020 | |a 0080466508 |c electronic bk. |9 0-08-046650-8 | ||
020 | |a 0123725607 |9 0-12-372560-7 | ||
020 | |a 9780080466507 |c electronic bk. |9 978-0-08-046650-7 | ||
020 | |a 9780123725608 |9 978-0-12-372560-8 | ||
035 | |a (OCoLC)162574061 | ||
035 | |a (DE-599)BVBBV043044453 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 616.8/04754 |2 22 | |
082 | 0 | |a 611.810222 |2 22 | |
245 | 1 | 0 | |a Statistical parametric mapping |b the analysis of funtional brain images |c edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny |
250 | |a First edition | ||
264 | 1 | |a Amsterdam |b Elsevier/Academic Press |c 2007 | |
300 | |a 1 Online-Ressource (vii, 647 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. | ||
500 | |a The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. | ||
500 | |a * An essential reference and companion for users of the SPM software * Provides a complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible | ||
500 | |a INTRODUCTION -- A short history of SPM. -- Statistical parametric mapping. -- Modelling brain responses. -- SECTION 1: COMPUTATIONAL ANATOMY -- Rigid-body Registration. -- Nonlinear Registration. -- Segmentation. -- Voxel-based Morphometry. -- SECTION 2: GENERAL LINEAR MODELS -- The General Linear Model. -- Contrasts & Classical Inference. -- Covariance Components. -- Hierarchical models. -- Random Effects Analysis. -- Analysis of variance. -- Convolution models for fMRI. -- Efficient Experimental Design for fMRI. -- Hierarchical models for EEG/MEG. -- SECTION 3: CLASSICAL INFERENCE -- Parametric procedures for imaging. -- Random Field Theory & inference. -- Topological Inference. -- False discovery rate procedures. -- Non-parametric procedures. -- SECTION 4: BAYESIAN INFERENCE -- Empirical Bayes & hierarchical models. -- Posterior probability maps. -- Variational Bayes. -- Spatiotemporal models for fMRI. -- Spatiotemporal models for EEG. -- SECTION 5: BIOPHYSICAL MODELS -- Forward models for fMRI. -- Forward models for EEG and MEG. -- Bayesian inversion of EEG models. -- Bayesian inversion for induced responses. -- Neuronal models of ensemble dynamics. -- Neuronal models of energetics. -- Neuronal models of EEG and MEG. -- Bayesian inversion of dynamic models -- Bayesian model selection & averaging. -- SECTION 6: CONNECTIVITY -- Functional integration. -- Functional Connectivity. -- Effective Connectivity. -- Nonlinear coupling and Kernels. -- Multivariate autoregressive models. -- Dynamic Causal Models for fMRI. -- Dynamic Causal Models for EEG. -- Dynamic Causal Models & Bayesian selection. -- APPENDICES -- Linear models and inference. -- Dynamical systems. -- Expectation maximisation. -- Variational Bayes under the Laplace approximation. -- Kalman Filtering. -- Random Field Theory | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a Eletroencefalografia |2 larpcal | |
650 | 4 | |a Brain Mapping / methods | |
650 | 4 | |a Image Processing, Computer-Assisted / methods | |
650 | 4 | |a Magnetic Resonance Imaging / methods | |
650 | 4 | |a Models, Neurological | |
650 | 4 | |a Models, Statistical | |
650 | 4 | |a Brain mapping |x Statistical methods | |
650 | 4 | |a Brain |x Imaging |x Statistical methods | |
650 | 0 | 7 | |a Gehirnkarte |0 (DE-588)4196204-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gehirn |0 (DE-588)4019752-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gehirnkarte |0 (DE-588)4196204-7 |D s |
689 | 0 | 1 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 3 | |a Gehirn |0 (DE-588)4019752-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Friston, K. J. |e Sonstige |4 oth | |
700 | 1 | |a Ashburner, John |e Sonstige |4 oth | |
700 | 1 | |a Kiebel, Stefan |e Sonstige |4 oth | |
700 | 1 | |a Nichols, Thomas |e Sonstige |4 oth | |
700 | 1 | |a Penny, William D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028468990 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175410328502272 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043044453 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)162574061 (DE-599)BVBBV043044453 |
dewey-full | 616.8/04754 611.810222 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 616 - Diseases 611 - Human anatomy, cytology, histology |
dewey-raw | 616.8/04754 611.810222 |
dewey-search | 616.8/04754 611.810222 |
dewey-sort | 3616.8 44754 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07201nmm a2200697zc 4500</leader><controlfield tag="001">BV043044453</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151123s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080466508</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-046650-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123725607</subfield><subfield code="9">0-12-372560-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080466507</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-046650-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123725608</subfield><subfield code="9">978-0-12-372560-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162574061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043044453</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.8/04754</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">611.810222</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical parametric mapping</subfield><subfield code="b">the analysis of funtional brain images</subfield><subfield code="c">edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier/Academic Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 647 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">* An essential reference and companion for users of the SPM software * Provides a complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">INTRODUCTION -- A short history of SPM. -- Statistical parametric mapping. -- Modelling brain responses. -- SECTION 1: COMPUTATIONAL ANATOMY -- Rigid-body Registration. -- Nonlinear Registration. -- Segmentation. -- Voxel-based Morphometry. -- SECTION 2: GENERAL LINEAR MODELS -- The General Linear Model. -- Contrasts & Classical Inference. -- Covariance Components. -- Hierarchical models. -- Random Effects Analysis. -- Analysis of variance. -- Convolution models for fMRI. -- Efficient Experimental Design for fMRI. -- Hierarchical models for EEG/MEG. -- SECTION 3: CLASSICAL INFERENCE -- Parametric procedures for imaging. -- Random Field Theory & inference. -- Topological Inference. -- False discovery rate procedures. -- Non-parametric procedures. -- SECTION 4: BAYESIAN INFERENCE -- Empirical Bayes & hierarchical models. -- Posterior probability maps. -- Variational Bayes. -- Spatiotemporal models for fMRI. -- Spatiotemporal models for EEG. -- SECTION 5: BIOPHYSICAL MODELS -- Forward models for fMRI. -- Forward models for EEG and MEG. -- Bayesian inversion of EEG models. -- Bayesian inversion for induced responses. -- Neuronal models of ensemble dynamics. -- Neuronal models of energetics. -- Neuronal models of EEG and MEG. -- Bayesian inversion of dynamic models -- Bayesian model selection & averaging. -- SECTION 6: CONNECTIVITY -- Functional integration. -- Functional Connectivity. -- Effective Connectivity. -- Nonlinear coupling and Kernels. -- Multivariate autoregressive models. -- Dynamic Causal Models for fMRI. -- Dynamic Causal Models for EEG. -- Dynamic Causal Models & Bayesian selection. -- APPENDICES -- Linear models and inference. -- Dynamical systems. -- Expectation maximisation. -- Variational Bayes under the Laplace approximation. -- Kalman Filtering. -- Random Field Theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eletroencefalografia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain Mapping / methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing, Computer-Assisted / methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Resonance Imaging / methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models, Neurological</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models, Statistical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain mapping</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain</subfield><subfield code="x">Imaging</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehirnkarte</subfield><subfield code="0">(DE-588)4196204-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gehirnkarte</subfield><subfield code="0">(DE-588)4196204-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friston, K. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashburner, John</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiebel, Stefan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nichols, Thomas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Penny, William D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028468990</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043044453 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:51Z |
institution | BVB |
isbn | 0080466508 0123725607 9780080466507 9780123725608 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028468990 |
oclc_num | 162574061 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 647 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier/Academic Press |
record_format | marc |
spelling | Statistical parametric mapping the analysis of funtional brain images edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny First edition Amsterdam Elsevier/Academic Press 2007 1 Online-Ressource (vii, 647 pages) txt rdacontent c rdamedia cr rdacarrier In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. * An essential reference and companion for users of the SPM software * Provides a complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible INTRODUCTION -- A short history of SPM. -- Statistical parametric mapping. -- Modelling brain responses. -- SECTION 1: COMPUTATIONAL ANATOMY -- Rigid-body Registration. -- Nonlinear Registration. -- Segmentation. -- Voxel-based Morphometry. -- SECTION 2: GENERAL LINEAR MODELS -- The General Linear Model. -- Contrasts & Classical Inference. -- Covariance Components. -- Hierarchical models. -- Random Effects Analysis. -- Analysis of variance. -- Convolution models for fMRI. -- Efficient Experimental Design for fMRI. -- Hierarchical models for EEG/MEG. -- SECTION 3: CLASSICAL INFERENCE -- Parametric procedures for imaging. -- Random Field Theory & inference. -- Topological Inference. -- False discovery rate procedures. -- Non-parametric procedures. -- SECTION 4: BAYESIAN INFERENCE -- Empirical Bayes & hierarchical models. -- Posterior probability maps. -- Variational Bayes. -- Spatiotemporal models for fMRI. -- Spatiotemporal models for EEG. -- SECTION 5: BIOPHYSICAL MODELS -- Forward models for fMRI. -- Forward models for EEG and MEG. -- Bayesian inversion of EEG models. -- Bayesian inversion for induced responses. -- Neuronal models of ensemble dynamics. -- Neuronal models of energetics. -- Neuronal models of EEG and MEG. -- Bayesian inversion of dynamic models -- Bayesian model selection & averaging. -- SECTION 6: CONNECTIVITY -- Functional integration. -- Functional Connectivity. -- Effective Connectivity. -- Nonlinear coupling and Kernels. -- Multivariate autoregressive models. -- Dynamic Causal Models for fMRI. -- Dynamic Causal Models for EEG. -- Dynamic Causal Models & Bayesian selection. -- APPENDICES -- Linear models and inference. -- Dynamical systems. -- Expectation maximisation. -- Variational Bayes under the Laplace approximation. -- Kalman Filtering. -- Random Field Theory Includes bibliographical references and index Eletroencefalografia larpcal Brain Mapping / methods Image Processing, Computer-Assisted / methods Magnetic Resonance Imaging / methods Models, Neurological Models, Statistical Brain mapping Statistical methods Brain Imaging Statistical methods Gehirnkarte (DE-588)4196204-7 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Gehirn (DE-588)4019752-9 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Gehirnkarte (DE-588)4196204-7 s Bildgebendes Verfahren (DE-588)4006617-4 s Statistik (DE-588)4056995-0 s Gehirn (DE-588)4019752-9 s 1\p DE-604 Friston, K. J. Sonstige oth Ashburner, John Sonstige oth Kiebel, Stefan Sonstige oth Nichols, Thomas Sonstige oth Penny, William D. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Statistical parametric mapping the analysis of funtional brain images Eletroencefalografia larpcal Brain Mapping / methods Image Processing, Computer-Assisted / methods Magnetic Resonance Imaging / methods Models, Neurological Models, Statistical Brain mapping Statistical methods Brain Imaging Statistical methods Gehirnkarte (DE-588)4196204-7 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd Gehirn (DE-588)4019752-9 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4196204-7 (DE-588)4006617-4 (DE-588)4019752-9 (DE-588)4056995-0 |
title | Statistical parametric mapping the analysis of funtional brain images |
title_auth | Statistical parametric mapping the analysis of funtional brain images |
title_exact_search | Statistical parametric mapping the analysis of funtional brain images |
title_full | Statistical parametric mapping the analysis of funtional brain images edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny |
title_fullStr | Statistical parametric mapping the analysis of funtional brain images edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny |
title_full_unstemmed | Statistical parametric mapping the analysis of funtional brain images edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny |
title_short | Statistical parametric mapping |
title_sort | statistical parametric mapping the analysis of funtional brain images |
title_sub | the analysis of funtional brain images |
topic | Eletroencefalografia larpcal Brain Mapping / methods Image Processing, Computer-Assisted / methods Magnetic Resonance Imaging / methods Models, Neurological Models, Statistical Brain mapping Statistical methods Brain Imaging Statistical methods Gehirnkarte (DE-588)4196204-7 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd Gehirn (DE-588)4019752-9 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Eletroencefalografia Brain Mapping / methods Image Processing, Computer-Assisted / methods Magnetic Resonance Imaging / methods Models, Neurological Models, Statistical Brain mapping Statistical methods Brain Imaging Statistical methods Gehirnkarte Bildgebendes Verfahren Gehirn Statistik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187303 |
work_keys_str_mv | AT fristonkj statisticalparametricmappingtheanalysisoffuntionalbrainimages AT ashburnerjohn statisticalparametricmappingtheanalysisoffuntionalbrainimages AT kiebelstefan statisticalparametricmappingtheanalysisoffuntionalbrainimages AT nicholsthomas statisticalparametricmappingtheanalysisoffuntionalbrainimages AT pennywilliamd statisticalparametricmappingtheanalysisoffuntionalbrainimages |