Random matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Academic Press
2004
|
Ausgabe: | 3rd ed |
Schriftenreihe: | Pure and applied mathematics (Academic Press)
142 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Title from e-book title screen (viewed Nov. 15, 2007) Includes bibliographical references (p. 655-679) and indexes Cover -- TOC$Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- CH$Introduction -- Random Matrices in Nuclear Physics -- Random Matrices in Other Branches of Knowledge -- A Summary of Statistical Facts about Nuclear Energy Levels -- Level Density -- Distribution of Neutron Widths -- Radiation and Fission Widths -- Level Spacings -- Definition of a Suitable Function for the Study of Level Correlations -- Wigner Surmise -- Electromagnetic Properties of Small Metallic Particles -- Analysis of Experimental Nuclear Levels -- The Zeros of The Riemann Zeta Function -- Things Worth Consideration, But Not Treated in This Book -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements -- Preliminaries -- Time-Reversal Invariance -- Gaussian Orthogonal Ensemble -- Gaussian Symplectic Ensemble -- Gaussian Unitary Ensemble -- Joint Probability Density Function for the Matrix Elements -- - Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Anti-Symmetric Hermitian Matrices -- Summary of Chapter 2 -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues -- Orthogonal Ensemble -- Symplectic Ensemble -- Unitary Ensemble -- Ensemble of Anti-Symmetric Hermitian Matrices -- Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Random Matrices and Information Theory -- Summary of Chapter 3 -- CH$Gaussian Ensembles. Level Density -- The Partition Function -- The Asymptotic Formula for the Level Density. Gaussian Ensembles -- The Asymptotic Formula for the Level Density. Other Ensembles -- Summary of Chapter 4 -- CH$Orthogonal, Skew-Orthogonal and Bi-Orthogonal Polynomials -- Quaternions, Pfaffians, Determinants -- Average Value of PI N j=1 f (xj); Orthogonal and Skew-Orthogonal Polynomials -- Case beta = 2; Orthogonal Polynomials -- - Case beta = 4; Skew-Orthogonal Polynomials of Quaternion Type -- Case beta = 1; Skew-Orthogonal Polynomials of Real Type -- Average Value of Pi j=1N psi(xj,yj ); Bi-Orthogonal Polynomials -- Correlation Functions -- Proof of Theorem 5.7.1 -- Case beta = 2 -- Case beta = 4 -- Case beta = 1, Even Number of Variables -- Case beta = 1, Odd Number of Variables -- Spacing Functions -- Determinantal Representations -- Integral Representations -- Properties of the Zeros -- Orthogonal Polynomials and the Riemann-Hilbert Problem -- A Remark (Balian) -- Summary of Chapter 5 -- CH$Gaussian Unitary Ensemble -- Generalities -- About Correlation and Cluster Functions -- About Level-Spacings -- Spacing Distribution -- Correlations and Spacings -- The n-Point Correlation Function -- Level Spacings -- Several Consecutive Spacings -- Some Remarks -- Summary of Chapter 6 -- CH$Gaussian Orthogonal Ensemble -- Generalities -- Correlation and Cluster Functions -- - Level Spacings. Integration Over Alternate Variables -- Several Consecutive Spacings: n = 2r -- Several Consecutive Spacings: n = 2r -- 1 -- Case n = 1 -- Case n = 2r -- 1 -- Bounds for the Distribution Function of the Spacings -- Summary of Chapter 7 -- CH$Gaussian Symplectic Ensem This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev̌ equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants |
Beschreibung: | 1 Online-Ressource (xviii, 688 p.) |
ISBN: | 008047411X 0120884097 0125660502 9780080474113 9780120884094 9780125660501 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043044270 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151123s2004 |||| o||u| ||||||eng d | ||
020 | |a 008047411X |c electronic bk. |9 0-08-047411-X | ||
020 | |a 0120884097 |9 0-12-088409-7 | ||
020 | |a 0125660502 |9 0-12-566050-2 | ||
020 | |a 9780080474113 |c electronic bk. |9 978-0-08-047411-3 | ||
020 | |a 9780120884094 |9 978-0-12-088409-4 | ||
020 | |a 9780125660501 |9 978-0-12-566050-1 | ||
035 | |a (OCoLC)317384419 | ||
035 | |a (DE-599)BVBBV043044270 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.9434 |2 22 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Mehta, M. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random matrices |c Madan Lal Mehta |
250 | |a 3rd ed | ||
264 | 1 | |a Amsterdam |b Academic Press |c 2004 | |
300 | |a 1 Online-Ressource (xviii, 688 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 142 | |
500 | |a Title from e-book title screen (viewed Nov. 15, 2007) | ||
500 | |a Includes bibliographical references (p. 655-679) and indexes | ||
500 | |a Cover -- TOC$Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- CH$Introduction -- Random Matrices in Nuclear Physics -- Random Matrices in Other Branches of Knowledge -- A Summary of Statistical Facts about Nuclear Energy Levels -- Level Density -- Distribution of Neutron Widths -- Radiation and Fission Widths -- Level Spacings -- Definition of a Suitable Function for the Study of Level Correlations -- Wigner Surmise -- Electromagnetic Properties of Small Metallic Particles -- Analysis of Experimental Nuclear Levels -- The Zeros of The Riemann Zeta Function -- Things Worth Consideration, But Not Treated in This Book -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements -- Preliminaries -- Time-Reversal Invariance -- Gaussian Orthogonal Ensemble -- Gaussian Symplectic Ensemble -- Gaussian Unitary Ensemble -- Joint Probability Density Function for the Matrix Elements -- | ||
500 | |a - Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Anti-Symmetric Hermitian Matrices -- Summary of Chapter 2 -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues -- Orthogonal Ensemble -- Symplectic Ensemble -- Unitary Ensemble -- Ensemble of Anti-Symmetric Hermitian Matrices -- Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Random Matrices and Information Theory -- Summary of Chapter 3 -- CH$Gaussian Ensembles. Level Density -- The Partition Function -- The Asymptotic Formula for the Level Density. Gaussian Ensembles -- The Asymptotic Formula for the Level Density. Other Ensembles -- Summary of Chapter 4 -- CH$Orthogonal, Skew-Orthogonal and Bi-Orthogonal Polynomials -- Quaternions, Pfaffians, Determinants -- Average Value of PI N j=1 f (xj); Orthogonal and Skew-Orthogonal Polynomials -- Case beta = 2; Orthogonal Polynomials -- | ||
500 | |a - Case beta = 4; Skew-Orthogonal Polynomials of Quaternion Type -- Case beta = 1; Skew-Orthogonal Polynomials of Real Type -- Average Value of Pi j=1N psi(xj,yj ); Bi-Orthogonal Polynomials -- Correlation Functions -- Proof of Theorem 5.7.1 -- Case beta = 2 -- Case beta = 4 -- Case beta = 1, Even Number of Variables -- Case beta = 1, Odd Number of Variables -- Spacing Functions -- Determinantal Representations -- Integral Representations -- Properties of the Zeros -- Orthogonal Polynomials and the Riemann-Hilbert Problem -- A Remark (Balian) -- Summary of Chapter 5 -- CH$Gaussian Unitary Ensemble -- Generalities -- About Correlation and Cluster Functions -- About Level-Spacings -- Spacing Distribution -- Correlations and Spacings -- The n-Point Correlation Function -- Level Spacings -- Several Consecutive Spacings -- Some Remarks -- Summary of Chapter 6 -- CH$Gaussian Orthogonal Ensemble -- Generalities -- Correlation and Cluster Functions -- | ||
500 | |a - Level Spacings. Integration Over Alternate Variables -- Several Consecutive Spacings: n = 2r -- Several Consecutive Spacings: n = 2r -- 1 -- Case n = 1 -- Case n = 2r -- 1 -- Bounds for the Distribution Function of the Spacings -- Summary of Chapter 7 -- CH$Gaussian Symplectic Ensem | ||
500 | |a This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev̌ equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants | ||
650 | 4 | |a Matrices aléatoires | |
650 | 7 | |a MATHEMATICS / Matrices |2 bisacsh | |
650 | 7 | |a Mecânica estatística |2 larpcal | |
650 | 7 | |a Random matrices |2 fast | |
650 | 4 | |a Random matrices | |
650 | 0 | 7 | |a Stochastische Matrix |0 (DE-588)4057624-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieniveau |0 (DE-588)4152225-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Energieniveau |0 (DE-588)4152225-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-12-088409-7 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028468807 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175409904877568 |
---|---|
any_adam_object | |
author | Mehta, M. L. |
author_facet | Mehta, M. L. |
author_role | aut |
author_sort | Mehta, M. L. |
author_variant | m l m ml mlm |
building | Verbundindex |
bvnumber | BV043044270 |
classification_rvk | SK 820 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)317384419 (DE-599)BVBBV043044270 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07729nmm a2200757zcb4500</leader><controlfield tag="001">BV043044270</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151123s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008047411X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-047411-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120884097</subfield><subfield code="9">0-12-088409-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0125660502</subfield><subfield code="9">0-12-566050-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080474113</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-047411-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120884094</subfield><subfield code="9">978-0-12-088409-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125660501</subfield><subfield code="9">978-0-12-566050-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)317384419</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043044270</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mehta, M. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random matrices</subfield><subfield code="c">Madan Lal Mehta</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 688 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">142</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from e-book title screen (viewed Nov. 15, 2007)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 655-679) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- TOC$Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- CH$Introduction -- Random Matrices in Nuclear Physics -- Random Matrices in Other Branches of Knowledge -- A Summary of Statistical Facts about Nuclear Energy Levels -- Level Density -- Distribution of Neutron Widths -- Radiation and Fission Widths -- Level Spacings -- Definition of a Suitable Function for the Study of Level Correlations -- Wigner Surmise -- Electromagnetic Properties of Small Metallic Particles -- Analysis of Experimental Nuclear Levels -- The Zeros of The Riemann Zeta Function -- Things Worth Consideration, But Not Treated in This Book -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements -- Preliminaries -- Time-Reversal Invariance -- Gaussian Orthogonal Ensemble -- Gaussian Symplectic Ensemble -- Gaussian Unitary Ensemble -- Joint Probability Density Function for the Matrix Elements -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Anti-Symmetric Hermitian Matrices -- Summary of Chapter 2 -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues -- Orthogonal Ensemble -- Symplectic Ensemble -- Unitary Ensemble -- Ensemble of Anti-Symmetric Hermitian Matrices -- Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Random Matrices and Information Theory -- Summary of Chapter 3 -- CH$Gaussian Ensembles. Level Density -- The Partition Function -- The Asymptotic Formula for the Level Density. Gaussian Ensembles -- The Asymptotic Formula for the Level Density. Other Ensembles -- Summary of Chapter 4 -- CH$Orthogonal, Skew-Orthogonal and Bi-Orthogonal Polynomials -- Quaternions, Pfaffians, Determinants -- Average Value of PI N j=1 f (xj); Orthogonal and Skew-Orthogonal Polynomials -- Case beta = 2; Orthogonal Polynomials -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Case beta = 4; Skew-Orthogonal Polynomials of Quaternion Type -- Case beta = 1; Skew-Orthogonal Polynomials of Real Type -- Average Value of Pi j=1N psi(xj,yj ); Bi-Orthogonal Polynomials -- Correlation Functions -- Proof of Theorem 5.7.1 -- Case beta = 2 -- Case beta = 4 -- Case beta = 1, Even Number of Variables -- Case beta = 1, Odd Number of Variables -- Spacing Functions -- Determinantal Representations -- Integral Representations -- Properties of the Zeros -- Orthogonal Polynomials and the Riemann-Hilbert Problem -- A Remark (Balian) -- Summary of Chapter 5 -- CH$Gaussian Unitary Ensemble -- Generalities -- About Correlation and Cluster Functions -- About Level-Spacings -- Spacing Distribution -- Correlations and Spacings -- The n-Point Correlation Function -- Level Spacings -- Several Consecutive Spacings -- Some Remarks -- Summary of Chapter 6 -- CH$Gaussian Orthogonal Ensemble -- Generalities -- Correlation and Cluster Functions -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Level Spacings. Integration Over Alternate Variables -- Several Consecutive Spacings: n = 2r -- Several Consecutive Spacings: n = 2r -- 1 -- Case n = 1 -- Case n = 2r -- 1 -- Bounds for the Distribution Function of the Spacings -- Summary of Chapter 7 -- CH$Gaussian Symplectic Ensem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev̌ equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices aléatoires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Matrices</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mecânica estatística</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-12-088409-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028468807</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043044270 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:50Z |
institution | BVB |
isbn | 008047411X 0120884097 0125660502 9780080474113 9780120884094 9780125660501 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028468807 |
oclc_num | 317384419 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xviii, 688 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Academic Press |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | Mehta, M. L. Verfasser aut Random matrices Madan Lal Mehta 3rd ed Amsterdam Academic Press 2004 1 Online-Ressource (xviii, 688 p.) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 142 Title from e-book title screen (viewed Nov. 15, 2007) Includes bibliographical references (p. 655-679) and indexes Cover -- TOC$Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- CH$Introduction -- Random Matrices in Nuclear Physics -- Random Matrices in Other Branches of Knowledge -- A Summary of Statistical Facts about Nuclear Energy Levels -- Level Density -- Distribution of Neutron Widths -- Radiation and Fission Widths -- Level Spacings -- Definition of a Suitable Function for the Study of Level Correlations -- Wigner Surmise -- Electromagnetic Properties of Small Metallic Particles -- Analysis of Experimental Nuclear Levels -- The Zeros of The Riemann Zeta Function -- Things Worth Consideration, But Not Treated in This Book -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements -- Preliminaries -- Time-Reversal Invariance -- Gaussian Orthogonal Ensemble -- Gaussian Symplectic Ensemble -- Gaussian Unitary Ensemble -- Joint Probability Density Function for the Matrix Elements -- - Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Anti-Symmetric Hermitian Matrices -- Summary of Chapter 2 -- CH$Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues -- Orthogonal Ensemble -- Symplectic Ensemble -- Unitary Ensemble -- Ensemble of Anti-Symmetric Hermitian Matrices -- Gaussian Ensemble of Hermitian Matrices With Unequal Real and Imaginary Parts -- Random Matrices and Information Theory -- Summary of Chapter 3 -- CH$Gaussian Ensembles. Level Density -- The Partition Function -- The Asymptotic Formula for the Level Density. Gaussian Ensembles -- The Asymptotic Formula for the Level Density. Other Ensembles -- Summary of Chapter 4 -- CH$Orthogonal, Skew-Orthogonal and Bi-Orthogonal Polynomials -- Quaternions, Pfaffians, Determinants -- Average Value of PI N j=1 f (xj); Orthogonal and Skew-Orthogonal Polynomials -- Case beta = 2; Orthogonal Polynomials -- - Case beta = 4; Skew-Orthogonal Polynomials of Quaternion Type -- Case beta = 1; Skew-Orthogonal Polynomials of Real Type -- Average Value of Pi j=1N psi(xj,yj ); Bi-Orthogonal Polynomials -- Correlation Functions -- Proof of Theorem 5.7.1 -- Case beta = 2 -- Case beta = 4 -- Case beta = 1, Even Number of Variables -- Case beta = 1, Odd Number of Variables -- Spacing Functions -- Determinantal Representations -- Integral Representations -- Properties of the Zeros -- Orthogonal Polynomials and the Riemann-Hilbert Problem -- A Remark (Balian) -- Summary of Chapter 5 -- CH$Gaussian Unitary Ensemble -- Generalities -- About Correlation and Cluster Functions -- About Level-Spacings -- Spacing Distribution -- Correlations and Spacings -- The n-Point Correlation Function -- Level Spacings -- Several Consecutive Spacings -- Some Remarks -- Summary of Chapter 6 -- CH$Gaussian Orthogonal Ensemble -- Generalities -- Correlation and Cluster Functions -- - Level Spacings. Integration Over Alternate Variables -- Several Consecutive Spacings: n = 2r -- Several Consecutive Spacings: n = 2r -- 1 -- Case n = 1 -- Case n = 2r -- 1 -- Bounds for the Distribution Function of the Spacings -- Summary of Chapter 7 -- CH$Gaussian Symplectic Ensem This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev̌ equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants Matrices aléatoires MATHEMATICS / Matrices bisacsh Mecânica estatística larpcal Random matrices fast Random matrices Stochastische Matrix (DE-588)4057624-3 gnd rswk-swf Energieniveau (DE-588)4152225-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Energieniveau (DE-588)4152225-4 s 3\p DE-604 Quantenmechanik (DE-588)4047989-4 s 4\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 0-12-088409-7 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mehta, M. L. Random matrices Matrices aléatoires MATHEMATICS / Matrices bisacsh Mecânica estatística larpcal Random matrices fast Random matrices Stochastische Matrix (DE-588)4057624-3 gnd Energieniveau (DE-588)4152225-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
subject_GND | (DE-588)4057624-3 (DE-588)4152225-4 (DE-588)4047989-4 (DE-588)4064324-4 |
title | Random matrices |
title_auth | Random matrices |
title_exact_search | Random matrices |
title_full | Random matrices Madan Lal Mehta |
title_fullStr | Random matrices Madan Lal Mehta |
title_full_unstemmed | Random matrices Madan Lal Mehta |
title_short | Random matrices |
title_sort | random matrices |
topic | Matrices aléatoires MATHEMATICS / Matrices bisacsh Mecânica estatística larpcal Random matrices fast Random matrices Stochastische Matrix (DE-588)4057624-3 gnd Energieniveau (DE-588)4152225-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
topic_facet | Matrices aléatoires MATHEMATICS / Matrices Mecânica estatística Random matrices Stochastische Matrix Energieniveau Quantenmechanik Wahrscheinlichkeitsrechnung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189456 |
work_keys_str_mv | AT mehtaml randommatrices |