Bochner-Riesz means on euclidean spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
[2013]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (viii, 376 pages) |
ISBN: | 9789814458764 9789814458771 9814458767 9814458775 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043040067 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814458764 |9 978-981-4458-76-4 | ||
020 | |a 9789814458771 |c electronic bk. |9 978-981-4458-77-1 | ||
020 | |a 9814458767 |9 981-4458-76-7 | ||
020 | |a 9814458775 |c electronic bk. |9 981-4458-77-5 | ||
035 | |a (OCoLC)861528243 | ||
035 | |a (DE-599)BVBBV043040067 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.2433 |2 23 | |
100 | 1 | |a Lu, Shanzhen |d 1939- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bochner-Riesz means on euclidean spaces |c Shanzhen Lu, Dunyan Yan |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (viii, 376 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
505 | 8 | |a This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means of multiple Fourier series, it includes the theory and application of a class of function space generated by blocks, which is closely related to almost everywhere convergence of the Bochner-Riesz means. In addition, the book also introduce some research results on approximation of functions by the Bochner-Riesz means | |
505 | 8 | |a An introduction to multiple Fourier series -- Bochner-Riesz means of multiple Fourier integral -- Bochner-Riesz means of multiple Fourier series -- The conjugate Fourier integral and series | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Fourier series | |
650 | 4 | |a Euclidean algorithm | |
650 | 0 | 7 | |a Konvergenz |0 (DE-588)4032326-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Integral |0 (DE-588)4121290-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvergenz |0 (DE-588)4032326-2 |D s |
689 | 0 | 1 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 0 | 2 | |a Fourier-Integral |0 (DE-588)4121290-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Yan, Dunyan |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Lu, Shanzhen, 1939- |t Bochner-Riesz means on Euclidean spaces |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028464714 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175403349180416 |
---|---|
any_adam_object | |
author | Lu, Shanzhen 1939- |
author_facet | Lu, Shanzhen 1939- |
author_role | aut |
author_sort | Lu, Shanzhen 1939- |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV043040067 |
collection | ZDB-4-EBA |
contents | This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means of multiple Fourier series, it includes the theory and application of a class of function space generated by blocks, which is closely related to almost everywhere convergence of the Bochner-Riesz means. In addition, the book also introduce some research results on approximation of functions by the Bochner-Riesz means An introduction to multiple Fourier series -- Bochner-Riesz means of multiple Fourier integral -- Bochner-Riesz means of multiple Fourier series -- The conjugate Fourier integral and series |
ctrlnum | (OCoLC)861528243 (DE-599)BVBBV043040067 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03462nmm a2200565zc 4500</leader><controlfield tag="001">BV043040067</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458764</subfield><subfield code="9">978-981-4458-76-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458771</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4458-77-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458767</subfield><subfield code="9">981-4458-76-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4458-77-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861528243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043040067</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Shanzhen</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bochner-Riesz means on euclidean spaces</subfield><subfield code="c">Shanzhen Lu, Dunyan Yan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 376 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means of multiple Fourier series, it includes the theory and application of a class of function space generated by blocks, which is closely related to almost everywhere convergence of the Bochner-Riesz means. In addition, the book also introduce some research results on approximation of functions by the Bochner-Riesz means</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">An introduction to multiple Fourier series -- Bochner-Riesz means of multiple Fourier integral -- Bochner-Riesz means of multiple Fourier series -- The conjugate Fourier integral and series</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean algorithm</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Integral</subfield><subfield code="0">(DE-588)4121290-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fourier-Integral</subfield><subfield code="0">(DE-588)4121290-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Dunyan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Lu, Shanzhen, 1939-</subfield><subfield code="t">Bochner-Riesz means on Euclidean spaces</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028464714</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043040067 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:44Z |
institution | BVB |
isbn | 9789814458764 9789814458771 9814458767 9814458775 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028464714 |
oclc_num | 861528243 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (viii, 376 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Lu, Shanzhen 1939- Verfasser aut Bochner-Riesz means on euclidean spaces Shanzhen Lu, Dunyan Yan [Hackensack] New Jersey World Scientific [2013] © 2013 1 online resource (viii, 376 pages) txt rdacontent c rdamedia cr rdacarrier Description based on print version record This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means of multiple Fourier series, it includes the theory and application of a class of function space generated by blocks, which is closely related to almost everywhere convergence of the Bochner-Riesz means. In addition, the book also introduce some research results on approximation of functions by the Bochner-Riesz means An introduction to multiple Fourier series -- Bochner-Riesz means of multiple Fourier integral -- Bochner-Riesz means of multiple Fourier series -- The conjugate Fourier integral and series MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier series Euclidean algorithm Konvergenz (DE-588)4032326-2 gnd rswk-swf Fourier-Integral (DE-588)4121290-3 gnd rswk-swf Fourier-Reihe (DE-588)4155109-6 gnd rswk-swf Konvergenz (DE-588)4032326-2 s Fourier-Reihe (DE-588)4155109-6 s Fourier-Integral (DE-588)4121290-3 s 1\p DE-604 Yan, Dunyan Sonstige oth Erscheint auch als Druck-Ausgabe Lu, Shanzhen, 1939- Bochner-Riesz means on Euclidean spaces http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lu, Shanzhen 1939- Bochner-Riesz means on euclidean spaces This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means of multiple Fourier series, it includes the theory and application of a class of function space generated by blocks, which is closely related to almost everywhere convergence of the Bochner-Riesz means. In addition, the book also introduce some research results on approximation of functions by the Bochner-Riesz means An introduction to multiple Fourier series -- Bochner-Riesz means of multiple Fourier integral -- Bochner-Riesz means of multiple Fourier series -- The conjugate Fourier integral and series MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier series Euclidean algorithm Konvergenz (DE-588)4032326-2 gnd Fourier-Integral (DE-588)4121290-3 gnd Fourier-Reihe (DE-588)4155109-6 gnd |
subject_GND | (DE-588)4032326-2 (DE-588)4121290-3 (DE-588)4155109-6 |
title | Bochner-Riesz means on euclidean spaces |
title_auth | Bochner-Riesz means on euclidean spaces |
title_exact_search | Bochner-Riesz means on euclidean spaces |
title_full | Bochner-Riesz means on euclidean spaces Shanzhen Lu, Dunyan Yan |
title_fullStr | Bochner-Riesz means on euclidean spaces Shanzhen Lu, Dunyan Yan |
title_full_unstemmed | Bochner-Riesz means on euclidean spaces Shanzhen Lu, Dunyan Yan |
title_short | Bochner-Riesz means on euclidean spaces |
title_sort | bochner riesz means on euclidean spaces |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Fourier series Euclidean algorithm Konvergenz (DE-588)4032326-2 gnd Fourier-Integral (DE-588)4121290-3 gnd Fourier-Reihe (DE-588)4155109-6 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Fourier series Euclidean algorithm Konvergenz Fourier-Integral Fourier-Reihe |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=637080 |
work_keys_str_mv | AT lushanzhen bochnerrieszmeansoneuclideanspaces AT yandunyan bochnerrieszmeansoneuclideanspaces |