Matrix spaces and Schur multipliers: matriceal harmonic analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource |
ISBN: | 9789814546775 9789814546782 9814546771 981454678X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043038786 | ||
003 | DE-604 | ||
005 | 20180409 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814546775 |9 978-981-4546-77-5 | ||
020 | |a 9789814546782 |c electronic bk. |9 978-981-4546-78-2 | ||
020 | |a 9814546771 |9 981-4546-77-1 | ||
020 | |a 981454678X |c electronic bk. |9 981-4546-78-X | ||
035 | |a (OCoLC)869281809 | ||
035 | |a (DE-599)BVBBV043038786 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512.9/434 |2 23 | |
100 | 1 | |a Persson, Lars-Erik |d 1944- |e Verfasser |0 (DE-588)1064609031 |4 aut | |
245 | 1 | 0 | |a Matrix spaces and Schur multipliers |b matriceal harmonic analysis |c by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c 2014 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
505 | 8 | |a 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces | |
505 | 8 | |a This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Algebraic spaces |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Schur multiplier |2 fast | |
650 | 4 | |a Matrices | |
650 | 4 | |a Algebraic spaces | |
650 | 4 | |a Schur multiplier | |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 0 | 1 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Popa, Nicolae |d 1943- |e Sonstige |0 (DE-588)1064609066 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Persson, Lars-Erik, 1944- author |t Matrix spaces and Schur multipliers |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028463433 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175400873492480 |
---|---|
any_adam_object | |
author | Persson, Lars-Erik 1944- |
author_GND | (DE-588)1064609031 (DE-588)1064609066 |
author_facet | Persson, Lars-Erik 1944- |
author_role | aut |
author_sort | Persson, Lars-Erik 1944- |
author_variant | l e p lep |
building | Verbundindex |
bvnumber | BV043038786 |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis |
ctrlnum | (OCoLC)869281809 (DE-599)BVBBV043038786 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04859nmm a2200565zc 4500</leader><controlfield tag="001">BV043038786</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180409 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814546775</subfield><subfield code="9">978-981-4546-77-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814546782</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4546-78-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814546771</subfield><subfield code="9">981-4546-77-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981454678X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4546-78-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043038786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Persson, Lars-Erik</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1064609031</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix spaces and Schur multipliers</subfield><subfield code="b">matriceal harmonic analysis</subfield><subfield code="c">by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schur multiplier</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur multiplier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popa, Nicolae</subfield><subfield code="d">1943-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1064609066</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Persson, Lars-Erik, 1944- author</subfield><subfield code="t">Matrix spaces and Schur multipliers</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028463433</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043038786 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:42Z |
institution | BVB |
isbn | 9789814546775 9789814546782 9814546771 981454678X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028463433 |
oclc_num | 869281809 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Persson, Lars-Erik 1944- Verfasser (DE-588)1064609031 aut Matrix spaces and Schur multipliers matriceal harmonic analysis by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) [Hackensack] New Jersey World Scientific 2014 1 online resource txt rdacontent c rdamedia cr rdacarrier Description based on print version record 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis MATHEMATICS / Algebra / Intermediate bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast Matrices Algebraic spaces Schur multiplier Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 s Matrizenrechnung (DE-588)4126963-9 s 1\p DE-604 Popa, Nicolae 1943- Sonstige (DE-588)1064609066 oth Erscheint auch als Druck-Ausgabe Persson, Lars-Erik, 1944- author Matrix spaces and Schur multipliers http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Persson, Lars-Erik 1944- Matrix spaces and Schur multipliers matriceal harmonic analysis 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis MATHEMATICS / Algebra / Intermediate bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast Matrices Algebraic spaces Schur multiplier Matrix Mathematik (DE-588)4037968-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
subject_GND | (DE-588)4037968-1 (DE-588)4126963-9 |
title | Matrix spaces and Schur multipliers matriceal harmonic analysis |
title_auth | Matrix spaces and Schur multipliers matriceal harmonic analysis |
title_exact_search | Matrix spaces and Schur multipliers matriceal harmonic analysis |
title_full | Matrix spaces and Schur multipliers matriceal harmonic analysis by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) |
title_fullStr | Matrix spaces and Schur multipliers matriceal harmonic analysis by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) |
title_full_unstemmed | Matrix spaces and Schur multipliers matriceal harmonic analysis by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) |
title_short | Matrix spaces and Schur multipliers |
title_sort | matrix spaces and schur multipliers matriceal harmonic analysis |
title_sub | matriceal harmonic analysis |
topic | MATHEMATICS / Algebra / Intermediate bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast Matrices Algebraic spaces Schur multiplier Matrix Mathematik (DE-588)4037968-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
topic_facet | MATHEMATICS / Algebra / Intermediate Algebraic spaces Matrices Schur multiplier Matrix Mathematik Matrizenrechnung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689755 |
work_keys_str_mv | AT perssonlarserik matrixspacesandschurmultipliersmatricealharmonicanalysis AT popanicolae matrixspacesandschurmultipliersmatricealharmonicanalysis |