Algorithmics of matching under preferences:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, New Jersey
World Scientific
[2013]
|
Schriftenreihe: | Series on theoretical computer science
v. 2 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xxxi, 415 pages) |
ISBN: | 9789814425247 9789814425254 9814425249 9814425257 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043035807 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814425247 |9 978-981-4425-24-7 | ||
020 | |a 9789814425254 |9 978-981-4425-25-4 | ||
020 | |a 9814425249 |9 981-4425-24-9 | ||
020 | |a 9814425257 |9 981-4425-25-7 | ||
035 | |a (OCoLC)840497867 | ||
035 | |a (DE-599)BVBBV043035807 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.66 |2 23 | |
100 | 1 | |a Manlove, David F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algorithmics of matching under preferences |c by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn |
264 | 1 | |a Hackensack, New Jersey |b World Scientific |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (xxxi, 415 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on theoretical computer science |v v. 2 | |
500 | |a Print version record | ||
505 | 8 | |a Matching problems with preferences are all around us - they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria | |
505 | 8 | |a 1. Preliminary definitions, results and motivation. 1.1. Introduction. 1.2. Matchings in graphs. 1.3. The Hospitals / Residents problem (HR). 1.4. The Stable Roommates problem (SR). 1.5. The House Allocation problem (HA) and its variants -- 2. The Stable Marriage problem: an update. 2.1. Introduction. 2.2. The 12 open problems of Gusfield and Irving. 2.3. The Subramanian and Feder papers. 2.4. Linear programming approaches. 2.5. Constraint programming approaches. 2.6. Paths to stability. 2.7. Median stable matchings. 2.8. Size versus stability. 2.9. Strategic issues. 2.10. Further results. 2.11. Conclusions and open problems -- 3. SM and HR with indifference. 3.1. Introduction. 3.2. Weak stability. 3.3. Strong stability. 3.4. Super-stability. 3.5. Other results. 3.6. Conclusions and open problems -- | |
505 | 8 | |a 4. The Stable Roommates problem. 4.1. Introduction. 4.2. Updates to open problems 8-12 from Gusfield & Irving. 4.3. Stable partitions. 4.4. Mirror posets and median graphs. 4.5. Indifference. 4.6. "Almost stable" matchings. 4.7. Globally-ranked pairs. 4.8. Other extensions of SR. 4.9. Conclusions and open problems -- 5. Further stable matching problems. 5.1. Introduction. 5.2. HR with lower and common quotas. 5.3. HR with couples. 5.4. Many-many stable matching. 5.5. The Student-Project Allocation Problem. 5.6. 3D stable matching problems. 5.7. Exchange-stable matching problems. 5.8. Two additional stable matching problems. 5.9. Conclusions and open problems -- 6. Pareto optimal matchings. 6.1. Introduction. 6.2. House Allocation problem. 6.3. Capacitated House Allocation problem. 6.4. Hospitals / Residents problem. 6.5. Stable Roommates problem. 6.6. Conclusions and open problems -- | |
505 | 8 | |a 7. Popular matchings. 7.1. Introduction. 7.2. House Allocation problem. 7.3. Capacitated House Allocation problem. 7.4. Weighted House Allocation problem. 7.5. Stable Roommates problem. 7.6. Stable Marriage problem. 7.7. Conclusions and open problems -- 8. Profile-based optimal matchings. 8.1. Introduction. 8.2. Rank-maximal matchings. 8.3. Greedy and generous maximum matchings. 8.4. Weight-maximal matchings. 8.5. Other profile-based optimal matching problems. 8.6. Conclusions and open problems | |
650 | 7 | |a MATHEMATICS / Combinatorics |2 bisacsh | |
650 | 7 | |a Matching theory |2 fast | |
650 | 4 | |a Matching theory | |
650 | 0 | 7 | |a Präferenz |0 (DE-588)4121501-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matching-Problem |0 (DE-588)4198185-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matching-Problem |0 (DE-588)4198185-6 |D s |
689 | 0 | 1 | |a Präferenz |0 (DE-588)4121501-1 |D s |
689 | 0 | 2 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mehlhorn, Kurt |d 1949- |4 aui | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Manlove, David |t Algorithmics of matching under preferences |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028460457 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175395815161856 |
---|---|
any_adam_object | |
author | Manlove, David F. |
author2 | Mehlhorn, Kurt 1949- |
author2_role | aui |
author2_variant | k m km |
author_facet | Manlove, David F. Mehlhorn, Kurt 1949- |
author_role | aut |
author_sort | Manlove, David F. |
author_variant | d f m df dfm |
building | Verbundindex |
bvnumber | BV043035807 |
collection | ZDB-4-EBA |
contents | Matching problems with preferences are all around us - they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria 1. Preliminary definitions, results and motivation. 1.1. Introduction. 1.2. Matchings in graphs. 1.3. The Hospitals / Residents problem (HR). 1.4. The Stable Roommates problem (SR). 1.5. The House Allocation problem (HA) and its variants -- 2. The Stable Marriage problem: an update. 2.1. Introduction. 2.2. The 12 open problems of Gusfield and Irving. 2.3. The Subramanian and Feder papers. 2.4. Linear programming approaches. 2.5. Constraint programming approaches. 2.6. Paths to stability. 2.7. Median stable matchings. 2.8. Size versus stability. 2.9. Strategic issues. 2.10. Further results. 2.11. Conclusions and open problems -- 3. SM and HR with indifference. 3.1. Introduction. 3.2. Weak stability. 3.3. Strong stability. 3.4. Super-stability. 3.5. Other results. 3.6. Conclusions and open problems -- 4. The Stable Roommates problem. 4.1. Introduction. 4.2. Updates to open problems 8-12 from Gusfield & Irving. 4.3. Stable partitions. 4.4. Mirror posets and median graphs. 4.5. Indifference. 4.6. "Almost stable" matchings. 4.7. Globally-ranked pairs. 4.8. Other extensions of SR. 4.9. Conclusions and open problems -- 5. Further stable matching problems. 5.1. Introduction. 5.2. HR with lower and common quotas. 5.3. HR with couples. 5.4. Many-many stable matching. 5.5. The Student-Project Allocation Problem. 5.6. 3D stable matching problems. 5.7. Exchange-stable matching problems. 5.8. Two additional stable matching problems. 5.9. Conclusions and open problems -- 6. Pareto optimal matchings. 6.1. Introduction. 6.2. House Allocation problem. 6.3. Capacitated House Allocation problem. 6.4. Hospitals / Residents problem. 6.5. Stable Roommates problem. 6.6. Conclusions and open problems -- 7. Popular matchings. 7.1. Introduction. 7.2. House Allocation problem. 7.3. Capacitated House Allocation problem. 7.4. Weighted House Allocation problem. 7.5. Stable Roommates problem. 7.6. Stable Marriage problem. 7.7. Conclusions and open problems -- 8. Profile-based optimal matchings. 8.1. Introduction. 8.2. Rank-maximal matchings. 8.3. Greedy and generous maximum matchings. 8.4. Weight-maximal matchings. 8.5. Other profile-based optimal matching problems. 8.6. Conclusions and open problems |
ctrlnum | (OCoLC)840497867 (DE-599)BVBBV043035807 |
dewey-full | 511.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.66 |
dewey-search | 511.66 |
dewey-sort | 3511.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05476nmm a2200589zcb4500</leader><controlfield tag="001">BV043035807</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814425247</subfield><subfield code="9">978-981-4425-24-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814425254</subfield><subfield code="9">978-981-4425-25-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814425249</subfield><subfield code="9">981-4425-24-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814425257</subfield><subfield code="9">981-4425-25-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)840497867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043035807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manlove, David F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algorithmics of matching under preferences</subfield><subfield code="c">by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxi, 415 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on theoretical computer science</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Matching problems with preferences are all around us - they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Preliminary definitions, results and motivation. 1.1. Introduction. 1.2. Matchings in graphs. 1.3. The Hospitals / Residents problem (HR). 1.4. The Stable Roommates problem (SR). 1.5. The House Allocation problem (HA) and its variants -- 2. The Stable Marriage problem: an update. 2.1. Introduction. 2.2. The 12 open problems of Gusfield and Irving. 2.3. The Subramanian and Feder papers. 2.4. Linear programming approaches. 2.5. Constraint programming approaches. 2.6. Paths to stability. 2.7. Median stable matchings. 2.8. Size versus stability. 2.9. Strategic issues. 2.10. Further results. 2.11. Conclusions and open problems -- 3. SM and HR with indifference. 3.1. Introduction. 3.2. Weak stability. 3.3. Strong stability. 3.4. Super-stability. 3.5. Other results. 3.6. Conclusions and open problems -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. The Stable Roommates problem. 4.1. Introduction. 4.2. Updates to open problems 8-12 from Gusfield & Irving. 4.3. Stable partitions. 4.4. Mirror posets and median graphs. 4.5. Indifference. 4.6. "Almost stable" matchings. 4.7. Globally-ranked pairs. 4.8. Other extensions of SR. 4.9. Conclusions and open problems -- 5. Further stable matching problems. 5.1. Introduction. 5.2. HR with lower and common quotas. 5.3. HR with couples. 5.4. Many-many stable matching. 5.5. The Student-Project Allocation Problem. 5.6. 3D stable matching problems. 5.7. Exchange-stable matching problems. 5.8. Two additional stable matching problems. 5.9. Conclusions and open problems -- 6. Pareto optimal matchings. 6.1. Introduction. 6.2. House Allocation problem. 6.3. Capacitated House Allocation problem. 6.4. Hospitals / Residents problem. 6.5. Stable Roommates problem. 6.6. Conclusions and open problems -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Popular matchings. 7.1. Introduction. 7.2. House Allocation problem. 7.3. Capacitated House Allocation problem. 7.4. Weighted House Allocation problem. 7.5. Stable Roommates problem. 7.6. Stable Marriage problem. 7.7. Conclusions and open problems -- 8. Profile-based optimal matchings. 8.1. Introduction. 8.2. Rank-maximal matchings. 8.3. Greedy and generous maximum matchings. 8.4. Weight-maximal matchings. 8.5. Other profile-based optimal matching problems. 8.6. Conclusions and open problems</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Combinatorics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matching theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matching theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Präferenz</subfield><subfield code="0">(DE-588)4121501-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matching-Problem</subfield><subfield code="0">(DE-588)4198185-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matching-Problem</subfield><subfield code="0">(DE-588)4198185-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Präferenz</subfield><subfield code="0">(DE-588)4121501-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehlhorn, Kurt</subfield><subfield code="d">1949-</subfield><subfield code="4">aui</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Manlove, David</subfield><subfield code="t">Algorithmics of matching under preferences</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028460457</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043035807 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:37Z |
institution | BVB |
isbn | 9789814425247 9789814425254 9814425249 9814425257 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028460457 |
oclc_num | 840497867 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xxxi, 415 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
series2 | Series on theoretical computer science |
spelling | Manlove, David F. Verfasser aut Algorithmics of matching under preferences by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn Hackensack, New Jersey World Scientific [2013] © 2013 1 online resource (xxxi, 415 pages) txt rdacontent c rdamedia cr rdacarrier Series on theoretical computer science v. 2 Print version record Matching problems with preferences are all around us - they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria 1. Preliminary definitions, results and motivation. 1.1. Introduction. 1.2. Matchings in graphs. 1.3. The Hospitals / Residents problem (HR). 1.4. The Stable Roommates problem (SR). 1.5. The House Allocation problem (HA) and its variants -- 2. The Stable Marriage problem: an update. 2.1. Introduction. 2.2. The 12 open problems of Gusfield and Irving. 2.3. The Subramanian and Feder papers. 2.4. Linear programming approaches. 2.5. Constraint programming approaches. 2.6. Paths to stability. 2.7. Median stable matchings. 2.8. Size versus stability. 2.9. Strategic issues. 2.10. Further results. 2.11. Conclusions and open problems -- 3. SM and HR with indifference. 3.1. Introduction. 3.2. Weak stability. 3.3. Strong stability. 3.4. Super-stability. 3.5. Other results. 3.6. Conclusions and open problems -- 4. The Stable Roommates problem. 4.1. Introduction. 4.2. Updates to open problems 8-12 from Gusfield & Irving. 4.3. Stable partitions. 4.4. Mirror posets and median graphs. 4.5. Indifference. 4.6. "Almost stable" matchings. 4.7. Globally-ranked pairs. 4.8. Other extensions of SR. 4.9. Conclusions and open problems -- 5. Further stable matching problems. 5.1. Introduction. 5.2. HR with lower and common quotas. 5.3. HR with couples. 5.4. Many-many stable matching. 5.5. The Student-Project Allocation Problem. 5.6. 3D stable matching problems. 5.7. Exchange-stable matching problems. 5.8. Two additional stable matching problems. 5.9. Conclusions and open problems -- 6. Pareto optimal matchings. 6.1. Introduction. 6.2. House Allocation problem. 6.3. Capacitated House Allocation problem. 6.4. Hospitals / Residents problem. 6.5. Stable Roommates problem. 6.6. Conclusions and open problems -- 7. Popular matchings. 7.1. Introduction. 7.2. House Allocation problem. 7.3. Capacitated House Allocation problem. 7.4. Weighted House Allocation problem. 7.5. Stable Roommates problem. 7.6. Stable Marriage problem. 7.7. Conclusions and open problems -- 8. Profile-based optimal matchings. 8.1. Introduction. 8.2. Rank-maximal matchings. 8.3. Greedy and generous maximum matchings. 8.4. Weight-maximal matchings. 8.5. Other profile-based optimal matching problems. 8.6. Conclusions and open problems MATHEMATICS / Combinatorics bisacsh Matching theory fast Matching theory Präferenz (DE-588)4121501-1 gnd rswk-swf Matching-Problem (DE-588)4198185-6 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Matching-Problem (DE-588)4198185-6 s Präferenz (DE-588)4121501-1 s Algorithmus (DE-588)4001183-5 s 1\p DE-604 Mehlhorn, Kurt 1949- aui Erscheint auch als Druck-Ausgabe Manlove, David Algorithmics of matching under preferences http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Manlove, David F. Algorithmics of matching under preferences Matching problems with preferences are all around us - they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria 1. Preliminary definitions, results and motivation. 1.1. Introduction. 1.2. Matchings in graphs. 1.3. The Hospitals / Residents problem (HR). 1.4. The Stable Roommates problem (SR). 1.5. The House Allocation problem (HA) and its variants -- 2. The Stable Marriage problem: an update. 2.1. Introduction. 2.2. The 12 open problems of Gusfield and Irving. 2.3. The Subramanian and Feder papers. 2.4. Linear programming approaches. 2.5. Constraint programming approaches. 2.6. Paths to stability. 2.7. Median stable matchings. 2.8. Size versus stability. 2.9. Strategic issues. 2.10. Further results. 2.11. Conclusions and open problems -- 3. SM and HR with indifference. 3.1. Introduction. 3.2. Weak stability. 3.3. Strong stability. 3.4. Super-stability. 3.5. Other results. 3.6. Conclusions and open problems -- 4. The Stable Roommates problem. 4.1. Introduction. 4.2. Updates to open problems 8-12 from Gusfield & Irving. 4.3. Stable partitions. 4.4. Mirror posets and median graphs. 4.5. Indifference. 4.6. "Almost stable" matchings. 4.7. Globally-ranked pairs. 4.8. Other extensions of SR. 4.9. Conclusions and open problems -- 5. Further stable matching problems. 5.1. Introduction. 5.2. HR with lower and common quotas. 5.3. HR with couples. 5.4. Many-many stable matching. 5.5. The Student-Project Allocation Problem. 5.6. 3D stable matching problems. 5.7. Exchange-stable matching problems. 5.8. Two additional stable matching problems. 5.9. Conclusions and open problems -- 6. Pareto optimal matchings. 6.1. Introduction. 6.2. House Allocation problem. 6.3. Capacitated House Allocation problem. 6.4. Hospitals / Residents problem. 6.5. Stable Roommates problem. 6.6. Conclusions and open problems -- 7. Popular matchings. 7.1. Introduction. 7.2. House Allocation problem. 7.3. Capacitated House Allocation problem. 7.4. Weighted House Allocation problem. 7.5. Stable Roommates problem. 7.6. Stable Marriage problem. 7.7. Conclusions and open problems -- 8. Profile-based optimal matchings. 8.1. Introduction. 8.2. Rank-maximal matchings. 8.3. Greedy and generous maximum matchings. 8.4. Weight-maximal matchings. 8.5. Other profile-based optimal matching problems. 8.6. Conclusions and open problems MATHEMATICS / Combinatorics bisacsh Matching theory fast Matching theory Präferenz (DE-588)4121501-1 gnd Matching-Problem (DE-588)4198185-6 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4121501-1 (DE-588)4198185-6 (DE-588)4001183-5 |
title | Algorithmics of matching under preferences |
title_auth | Algorithmics of matching under preferences |
title_exact_search | Algorithmics of matching under preferences |
title_full | Algorithmics of matching under preferences by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn |
title_fullStr | Algorithmics of matching under preferences by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn |
title_full_unstemmed | Algorithmics of matching under preferences by David Manlove, University of Glasgow, UK ; with a foreword by Kurt Mehlhorn |
title_short | Algorithmics of matching under preferences |
title_sort | algorithmics of matching under preferences |
topic | MATHEMATICS / Combinatorics bisacsh Matching theory fast Matching theory Präferenz (DE-588)4121501-1 gnd Matching-Problem (DE-588)4198185-6 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | MATHEMATICS / Combinatorics Matching theory Präferenz Matching-Problem Algorithmus |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=564526 |
work_keys_str_mv | AT manlovedavidf algorithmicsofmatchingunderpreferences AT mehlhornkurt algorithmicsofmatchingunderpreferences |