Arithmetic compactifications of PEL-type Shimura varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; Oxford
Princeton University Press
[2013]
|
Schriftenreihe: | London Mathematical Society monographs
new ser., no. 36 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xxiii, 561 pages) illustrations |
ISBN: | 0691156549 1299333001 1400846013 9780691156545 9781299333000 9781400846016 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043035541 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 0691156549 |9 0-691-15654-9 | ||
020 | |a 1299333001 |9 1-299-33300-1 | ||
020 | |a 1400846013 |9 1-4008-4601-3 | ||
020 | |a 9780691156545 |9 978-0-691-15654-5 | ||
020 | |a 9781299333000 |9 978-1-299-33300-0 | ||
020 | |a 9781400846016 |9 978-1-4008-4601-6 | ||
035 | |a (OCoLC)832314069 | ||
035 | |a (DE-599)BVBBV043035541 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.3/5 |2 23 | |
100 | 1 | |a Lan, Kai-Wen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Arithmetic compactifications of PEL-type Shimura varieties |c Kai-Wen Lan |
264 | 1 | |a Princeton ; Oxford |b Princeton University Press |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (xxiii, 561 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society monographs |v new ser., no. 36 | |
500 | |a Print version record | ||
505 | 8 | |a Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion | |
505 | 8 | |a "By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website | |
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Arithmetical algebraic geometry |2 fast | |
650 | 7 | |a Shimura varieties |2 fast | |
650 | 4 | |a Shimura varieties | |
650 | 4 | |a Arithmetical algebraic geometry | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Lan, Kai-Wen |t Arithmetic compactifications of PEL-type Shimura varieties |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028460191 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175395295068160 |
---|---|
any_adam_object | |
author | Lan, Kai-Wen |
author_facet | Lan, Kai-Wen |
author_role | aut |
author_sort | Lan, Kai-Wen |
author_variant | k w l kwl |
building | Verbundindex |
bvnumber | BV043035541 |
collection | ZDB-4-EBA |
contents | Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion "By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website |
ctrlnum | (OCoLC)832314069 (DE-599)BVBBV043035541 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03344nmm a2200517zcb4500</leader><controlfield tag="001">BV043035541</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691156549</subfield><subfield code="9">0-691-15654-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299333001</subfield><subfield code="9">1-299-33300-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400846013</subfield><subfield code="9">1-4008-4601-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691156545</subfield><subfield code="9">978-0-691-15654-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299333000</subfield><subfield code="9">978-1-299-33300-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400846016</subfield><subfield code="9">978-1-4008-4601-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)832314069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043035541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lan, Kai-Wen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic compactifications of PEL-type Shimura varieties</subfield><subfield code="c">Kai-Wen Lan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiii, 561 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society monographs</subfield><subfield code="v">new ser., no. 36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arithmetical algebraic geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shimura varieties</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetical algebraic geometry</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Lan, Kai-Wen</subfield><subfield code="t">Arithmetic compactifications of PEL-type Shimura varieties</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028460191</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043035541 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:36Z |
institution | BVB |
isbn | 0691156549 1299333001 1400846013 9780691156545 9781299333000 9781400846016 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028460191 |
oclc_num | 832314069 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xxiii, 561 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Princeton University Press |
record_format | marc |
series2 | London Mathematical Society monographs |
spelling | Lan, Kai-Wen Verfasser aut Arithmetic compactifications of PEL-type Shimura varieties Kai-Wen Lan Princeton ; Oxford Princeton University Press [2013] © 2013 1 online resource (xxiii, 561 pages) illustrations txt rdacontent c rdamedia cr rdacarrier London Mathematical Society monographs new ser., no. 36 Print version record Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion "By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Geometry / General bisacsh Arithmetical algebraic geometry fast Shimura varieties fast Shimura varieties Arithmetical algebraic geometry Erscheint auch als Druck-Ausgabe Lan, Kai-Wen Arithmetic compactifications of PEL-type Shimura varieties http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042 Aggregator Volltext |
spellingShingle | Lan, Kai-Wen Arithmetic compactifications of PEL-type Shimura varieties Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion "By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Geometry / General bisacsh Arithmetical algebraic geometry fast Shimura varieties fast Shimura varieties Arithmetical algebraic geometry |
title | Arithmetic compactifications of PEL-type Shimura varieties |
title_auth | Arithmetic compactifications of PEL-type Shimura varieties |
title_exact_search | Arithmetic compactifications of PEL-type Shimura varieties |
title_full | Arithmetic compactifications of PEL-type Shimura varieties Kai-Wen Lan |
title_fullStr | Arithmetic compactifications of PEL-type Shimura varieties Kai-Wen Lan |
title_full_unstemmed | Arithmetic compactifications of PEL-type Shimura varieties Kai-Wen Lan |
title_short | Arithmetic compactifications of PEL-type Shimura varieties |
title_sort | arithmetic compactifications of pel type shimura varieties |
topic | MATHEMATICS / Geometry / Algebraic bisacsh MATHEMATICS / Geometry / General bisacsh Arithmetical algebraic geometry fast Shimura varieties fast Shimura varieties Arithmetical algebraic geometry |
topic_facet | MATHEMATICS / Geometry / Algebraic MATHEMATICS / Geometry / General Arithmetical algebraic geometry Shimura varieties |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=517042 |
work_keys_str_mv | AT lankaiwen arithmeticcompactificationsofpeltypeshimuravarieties |