Elements of algebraic coding systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, [New York] (222 East 46th Street, New York, NY 10017)
Momentum Press
2014
|
Schriftenreihe: | Communications and signal processing collection
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Title from PDF title page (viewed on August 1, 2014) |
Beschreibung: | 1 online resource (1 PDF (xi, 188 pages)) |
ISBN: | 1606505750 9781606505748 9781606505755 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043035081 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2014 |||| o||u| ||||||eng d | ||
020 | |a 1606505750 |c electronic bk. |9 1-60650-575-0 | ||
020 | |a 9781606505748 |9 978-1-60650-574-8 | ||
020 | |a 9781606505755 |c electronic bk. |9 978-1-60650-575-5 | ||
035 | |a (OCoLC)885199308 | ||
035 | |a (DE-599)BVBBV043035081 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003.54 |2 23 | |
100 | 1 | |a Rocha, Valdemar C. da |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elements of algebraic coding systems |c Valdemar Cardoso da Rocha, Jr |
264 | 1 | |a New York, [New York] (222 East 46th Street, New York, NY 10017) |b Momentum Press |c 2014 | |
300 | |a 1 online resource (1 PDF (xi, 188 pages)) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Communications and signal processing collection | |
500 | |a Title from PDF title page (viewed on August 1, 2014) | ||
505 | 8 | |a 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions -- | |
505 | 8 | |a 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions -- | |
505 | 8 | |a 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions -- | |
505 | 8 | |a 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions -- | |
505 | 8 | |a 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions -- | |
505 | 8 | |a 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions -- | |
505 | 8 | |a 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions -- | |
505 | 8 | |a 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions -- | |
505 | 8 | |a 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions -- | |
505 | 8 | |a 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions -- | |
505 | 8 | |a 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions -- | |
505 | 8 | |a Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm -- | |
505 | 8 | |a This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials | |
650 | 7 | |a SCIENCE / System Theory |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Operations Research |2 bisacsh | |
650 | 7 | |a Coding theory |2 fast | |
650 | 4 | |a Coding theory | |
650 | 0 | 7 | |a Codierungstheorie |0 (DE-588)4139405-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | 1 | |a Codierungstheorie |0 (DE-588)4139405-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028459731 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175394557919232 |
---|---|
any_adam_object | |
author | Rocha, Valdemar C. da 1947- |
author_facet | Rocha, Valdemar C. da 1947- |
author_role | aut |
author_sort | Rocha, Valdemar C. da 1947- |
author_variant | v c d r vcd vcdr |
building | Verbundindex |
bvnumber | BV043035081 |
collection | ZDB-4-EBA |
contents | 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions -- 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions -- 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions -- 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions -- 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions -- 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions -- 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions -- 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions -- 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions -- 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions -- 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions -- Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm -- This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials |
ctrlnum | (OCoLC)885199308 (DE-599)BVBBV043035081 |
dewey-full | 003.54 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.54 |
dewey-search | 003.54 |
dewey-sort | 13.54 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08129nmm a2200637zc 4500</leader><controlfield tag="001">BV043035081</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606505750</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-60650-575-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505748</subfield><subfield code="9">978-1-60650-574-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505755</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-60650-575-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885199308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043035081</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.54</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rocha, Valdemar C. da</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of algebraic coding systems</subfield><subfield code="c">Valdemar Cardoso da Rocha, Jr</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, [New York] (222 East 46th Street, New York, NY 10017)</subfield><subfield code="b">Momentum Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 PDF (xi, 188 pages))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Communications and signal processing collection</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on August 1, 2014)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / System Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Operations Research</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coding theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coding theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028459731</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043035081 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:35Z |
institution | BVB |
isbn | 1606505750 9781606505748 9781606505755 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028459731 |
oclc_num | 885199308 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (1 PDF (xi, 188 pages)) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Momentum Press |
record_format | marc |
series2 | Communications and signal processing collection |
spelling | Rocha, Valdemar C. da 1947- Verfasser aut Elements of algebraic coding systems Valdemar Cardoso da Rocha, Jr New York, [New York] (222 East 46th Street, New York, NY 10017) Momentum Press 2014 1 online resource (1 PDF (xi, 188 pages)) txt rdacontent c rdamedia cr rdacarrier Communications and signal processing collection Title from PDF title page (viewed on August 1, 2014) 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions -- 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions -- 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions -- 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions -- 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions -- 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions -- 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions -- 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions -- 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions -- 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions -- 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions -- Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm -- This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Coding theory fast Coding theory Codierungstheorie (DE-588)4139405-7 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Algebra (DE-588)4001156-2 s Codierungstheorie (DE-588)4139405-7 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rocha, Valdemar C. da 1947- Elements of algebraic coding systems 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions -- 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions -- 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions -- 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions -- 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions -- 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions -- 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions -- 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions -- 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions -- 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions -- 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions -- Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm -- This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Coding theory fast Coding theory Codierungstheorie (DE-588)4139405-7 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4139405-7 (DE-588)4001156-2 |
title | Elements of algebraic coding systems |
title_auth | Elements of algebraic coding systems |
title_exact_search | Elements of algebraic coding systems |
title_full | Elements of algebraic coding systems Valdemar Cardoso da Rocha, Jr |
title_fullStr | Elements of algebraic coding systems Valdemar Cardoso da Rocha, Jr |
title_full_unstemmed | Elements of algebraic coding systems Valdemar Cardoso da Rocha, Jr |
title_short | Elements of algebraic coding systems |
title_sort | elements of algebraic coding systems |
topic | SCIENCE / System Theory bisacsh TECHNOLOGY & ENGINEERING / Operations Research bisacsh Coding theory fast Coding theory Codierungstheorie (DE-588)4139405-7 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | SCIENCE / System Theory TECHNOLOGY & ENGINEERING / Operations Research Coding theory Codierungstheorie Algebra |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=812965 |
work_keys_str_mv | AT rochavaldemarcda elementsofalgebraiccodingsystems |