Orthogonal polynomials of several variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York
Cambridge University Press
2001
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
v. 81 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xv, 390 pages) |
ISBN: | 0521800439 1107089514 9780521800433 9781107089518 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043034589 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2001 |||| o||u| ||||||eng d | ||
020 | |a 0521800439 |9 0-521-80043-9 | ||
020 | |a 1107089514 |c electronic bk. |9 1-107-08951-4 | ||
020 | |a 9780521800433 |9 978-0-521-80043-3 | ||
020 | |a 9781107089518 |c electronic bk. |9 978-1-107-08951-8 | ||
035 | |a (OCoLC)861692872 | ||
035 | |a (DE-599)BVBBV043034589 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.55 |2 22 | |
100 | 1 | |a Dunkl, Charles F. |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal polynomials of several variables |c Charles F. Dunkl, Yuan Xu |
264 | 1 | |a Cambridge ; New York |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (xv, 390 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v v. 81 | |
500 | |a Description based on print version record | ||
505 | 8 | |a "This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods | |
505 | 8 | |a Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. Many results come from current research literature. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers."--BOOK JACKET. | |
505 | 8 | 0 | |t Examples of orthogonal polynomials in several bariables -- |t General properties of orthogonal polynomialsin several variables -- |t Root systems and coxeter groups -- |t Sperical harmonics associated with reflection groups -- |t Classical and generalized classical orthogonal polynomials -- |t Summability of orthogonal expansions -- |t Orthogonal polynomials associated with symmetric groups -- |t Orthogonal polynomials associated with octahedral groups and applications |
650 | 4 | |a groupe symétrie | |
650 | 4 | |a fonction poids | |
650 | 4 | |a analyse harmonique | |
650 | 4 | |a fonction hypergéométrique | |
650 | 4 | |a fonction plusieurs variables | |
650 | 4 | |a polynôme orthogonal | |
650 | 4 | |a Polynômes orthogonaux | |
650 | 4 | |a Fonctions de plusieurs variables réelles | |
650 | 7 | |a Orthogonale reeksen |2 gtt | |
650 | 7 | |a Polynômes orthogonaux |2 ram | |
650 | 7 | |a Fonctions de plusieurs variables réelles |2 ram | |
650 | 7 | |a Orthogonale Polynome |2 swd | |
650 | 7 | |a Functions of several real variables |2 fast | |
650 | 7 | |a Orthogonal polynomials |2 fast | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Functions of several real variables | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Xu, Yuan |d 1957- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Dunkl, Charles F |t , 1941-. Orthogonal polynomials of several variables |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028459239 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175393558626304 |
---|---|
any_adam_object | |
author | Dunkl, Charles F. 1941- |
author_facet | Dunkl, Charles F. 1941- |
author_role | aut |
author_sort | Dunkl, Charles F. 1941- |
author_variant | c f d cf cfd |
building | Verbundindex |
bvnumber | BV043034589 |
collection | ZDB-4-EBA |
contents | "This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. Many results come from current research literature. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers."--BOOK JACKET. Examples of orthogonal polynomials in several bariables -- General properties of orthogonal polynomialsin several variables -- Root systems and coxeter groups -- Sperical harmonics associated with reflection groups -- Classical and generalized classical orthogonal polynomials -- Summability of orthogonal expansions -- Orthogonal polynomials associated with symmetric groups -- Orthogonal polynomials associated with octahedral groups and applications |
ctrlnum | (OCoLC)861692872 (DE-599)BVBBV043034589 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04519nmm a2200721zcb4500</leader><controlfield tag="001">BV043034589</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521800439</subfield><subfield code="9">0-521-80043-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089514</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08951-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521800433</subfield><subfield code="9">978-0-521-80043-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089518</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08951-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034589</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunkl, Charles F.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials of several variables</subfield><subfield code="c">Charles F. Dunkl, Yuan Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 390 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">v. 81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. Many results come from current research literature. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers."--BOOK JACKET.</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Examples of orthogonal polynomials in several bariables --</subfield><subfield code="t">General properties of orthogonal polynomialsin several variables --</subfield><subfield code="t">Root systems and coxeter groups --</subfield><subfield code="t">Sperical harmonics associated with reflection groups --</subfield><subfield code="t">Classical and generalized classical orthogonal polynomials --</subfield><subfield code="t">Summability of orthogonal expansions --</subfield><subfield code="t">Orthogonal polynomials associated with symmetric groups --</subfield><subfield code="t">Orthogonal polynomials associated with octahedral groups and applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groupe symétrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fonction poids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analyse harmonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fonction hypergéométrique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fonction plusieurs variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polynôme orthogonal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynômes orthogonaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions de plusieurs variables réelles</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonale reeksen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynômes orthogonaux</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions de plusieurs variables réelles</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of several real variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonal polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several real variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuan</subfield><subfield code="d">1957-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Dunkl, Charles F</subfield><subfield code="t">, 1941-. Orthogonal polynomials of several variables</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028459239</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034589 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:35Z |
institution | BVB |
isbn | 0521800439 1107089514 9780521800433 9781107089518 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028459239 |
oclc_num | 861692872 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xv, 390 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Dunkl, Charles F. 1941- Verfasser aut Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu Cambridge ; New York Cambridge University Press 2001 1 online resource (xv, 390 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications v. 81 Description based on print version record "This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. Many results come from current research literature. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers."--BOOK JACKET. Examples of orthogonal polynomials in several bariables -- General properties of orthogonal polynomialsin several variables -- Root systems and coxeter groups -- Sperical harmonics associated with reflection groups -- Classical and generalized classical orthogonal polynomials -- Summability of orthogonal expansions -- Orthogonal polynomials associated with symmetric groups -- Orthogonal polynomials associated with octahedral groups and applications groupe symétrie fonction poids analyse harmonique fonction hypergéométrique fonction plusieurs variables polynôme orthogonal Polynômes orthogonaux Fonctions de plusieurs variables réelles Orthogonale reeksen gtt Polynômes orthogonaux ram Fonctions de plusieurs variables réelles ram Orthogonale Polynome swd Functions of several real variables fast Orthogonal polynomials fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 s Mehrere Variable (DE-588)4277015-4 s 1\p DE-604 Xu, Yuan 1957- Sonstige oth Erscheint auch als Druck-Ausgabe Dunkl, Charles F , 1941-. Orthogonal polynomials of several variables http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunkl, Charles F. 1941- Orthogonal polynomials of several variables "This is the first modern book on orthogonal polynomials of several variables, which are interesting both as objects of study and as tools used in multivariate analysis, including approximations and numerical integration. The book, which is intended both as an introduction to the subject and as a reference, presents the theory in elegant form and with modern concepts and notation. It introduces the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains such as the cube, the simplex, the sphere and the ball, or those of Gaussian type, for which fairly explicit formulae exist. The approach is a blend of classical analysis and symmetry-group-theoretic methods Reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. Many results come from current research literature. The book will be welcomed by research mathematicians and applied scientists, including applied mathematicians, physicists, chemists and engineers."--BOOK JACKET. Examples of orthogonal polynomials in several bariables -- General properties of orthogonal polynomialsin several variables -- Root systems and coxeter groups -- Sperical harmonics associated with reflection groups -- Classical and generalized classical orthogonal polynomials -- Summability of orthogonal expansions -- Orthogonal polynomials associated with symmetric groups -- Orthogonal polynomials associated with octahedral groups and applications groupe symétrie fonction poids analyse harmonique fonction hypergéométrique fonction plusieurs variables polynôme orthogonal Polynômes orthogonaux Fonctions de plusieurs variables réelles Orthogonale reeksen gtt Polynômes orthogonaux ram Fonctions de plusieurs variables réelles ram Orthogonale Polynome swd Functions of several real variables fast Orthogonal polynomials fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd Mehrere Variable (DE-588)4277015-4 gnd |
subject_GND | (DE-588)4172863-4 (DE-588)4277015-4 |
title | Orthogonal polynomials of several variables |
title_alt | Examples of orthogonal polynomials in several bariables -- General properties of orthogonal polynomialsin several variables -- Root systems and coxeter groups -- Sperical harmonics associated with reflection groups -- Classical and generalized classical orthogonal polynomials -- Summability of orthogonal expansions -- Orthogonal polynomials associated with symmetric groups -- Orthogonal polynomials associated with octahedral groups and applications |
title_auth | Orthogonal polynomials of several variables |
title_exact_search | Orthogonal polynomials of several variables |
title_full | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_fullStr | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_full_unstemmed | Orthogonal polynomials of several variables Charles F. Dunkl, Yuan Xu |
title_short | Orthogonal polynomials of several variables |
title_sort | orthogonal polynomials of several variables |
topic | groupe symétrie fonction poids analyse harmonique fonction hypergéométrique fonction plusieurs variables polynôme orthogonal Polynômes orthogonaux Fonctions de plusieurs variables réelles Orthogonale reeksen gtt Polynômes orthogonaux ram Fonctions de plusieurs variables réelles ram Orthogonale Polynome swd Functions of several real variables fast Orthogonal polynomials fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Orthogonal polynomials Functions of several real variables Orthogonale Polynome (DE-588)4172863-4 gnd Mehrere Variable (DE-588)4277015-4 gnd |
topic_facet | groupe symétrie fonction poids analyse harmonique fonction hypergéométrique fonction plusieurs variables polynôme orthogonal Polynômes orthogonaux Fonctions de plusieurs variables réelles Orthogonale reeksen Orthogonale Polynome Functions of several real variables Orthogonal polynomials MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Mehrere Variable |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569278 |
work_keys_str_mv | AT dunklcharlesf orthogonalpolynomialsofseveralvariables AT xuyuan orthogonalpolynomialsofseveralvariables |