Non-Euclidean geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C.
Mathematical Association of America
[1998]
|
Ausgabe: | Sixth edition |
Schriftenreihe: | MAA spectrum
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xviii, 336 pages) illustrations |
ISBN: | 0883855224 1614445168 9780883855225 9781614445166 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043034497 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s1998 |||| o||u| ||||||eng d | ||
020 | |a 0883855224 |9 0-88385-522-4 | ||
020 | |a 1614445168 |c electronic bk. |9 1-61444-516-8 | ||
020 | |a 9780883855225 |9 978-0-88385-522-5 | ||
020 | |a 9781614445166 |c electronic bk. |9 978-1-61444-516-6 | ||
035 | |a (OCoLC)876593007 | ||
035 | |a (DE-599)BVBBV043034497 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.9 |2 22 | |
100 | 1 | |a Coxeter, H. S. M., (Harold Scott Macdonald) |d 1907-2003 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Euclidean geometry |c H.S.M. Coxeter |
250 | |a Sixth edition | ||
264 | 1 | |a Washington, D.C. |b Mathematical Association of America |c [1998] | |
264 | 4 | |c © 1998 | |
300 | |a 1 online resource (xviii, 336 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a MAA spectrum | |
500 | |a Description based on print version record | ||
505 | 8 | |a The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory. - Publisher | |
650 | 7 | |a Geometry, Non-Euclidean |2 fast | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 4 | |a Geometry, Non-Euclidean | |
650 | 0 | 7 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Coxeter, H |t S. M. (Harold Scott Macdonald), 1907-2003. Non-Euclidean geometry |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028459146 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175393365688320 |
---|---|
any_adam_object | |
author | Coxeter, H. S. M., (Harold Scott Macdonald) 1907-2003 |
author_facet | Coxeter, H. S. M., (Harold Scott Macdonald) 1907-2003 |
author_role | aut |
author_sort | Coxeter, H. S. M., (Harold Scott Macdonald) 1907-2003 |
author_variant | h s m h s m c hsmhsm hsmhsmc |
building | Verbundindex |
bvnumber | BV043034497 |
collection | ZDB-4-EBA |
contents | The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory. - Publisher |
ctrlnum | (OCoLC)876593007 (DE-599)BVBBV043034497 |
dewey-full | 516.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.9 |
dewey-search | 516.9 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Sixth edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03411nmm a2200505zc 4500</leader><controlfield tag="001">BV043034497</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883855224</subfield><subfield code="9">0-88385-522-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614445168</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-61444-516-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883855225</subfield><subfield code="9">978-0-88385-522-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614445166</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-61444-516-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)876593007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034497</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coxeter, H. S. M., (Harold Scott Macdonald)</subfield><subfield code="d">1907-2003</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Euclidean geometry</subfield><subfield code="c">H.S.M. Coxeter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Sixth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C.</subfield><subfield code="b">Mathematical Association of America</subfield><subfield code="c">[1998]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 336 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">MAA spectrum</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory. - Publisher</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Non-Euclidean</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Non-Euclidean</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Coxeter, H</subfield><subfield code="t">S. M. (Harold Scott Macdonald), 1907-2003. Non-Euclidean geometry</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028459146</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034497 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:34Z |
institution | BVB |
isbn | 0883855224 1614445168 9780883855225 9781614445166 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028459146 |
oclc_num | 876593007 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xviii, 336 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Mathematical Association of America |
record_format | marc |
series2 | MAA spectrum |
spelling | Coxeter, H. S. M., (Harold Scott Macdonald) 1907-2003 Verfasser aut Non-Euclidean geometry H.S.M. Coxeter Sixth edition Washington, D.C. Mathematical Association of America [1998] © 1998 1 online resource (xviii, 336 pages) illustrations txt rdacontent c rdamedia cr rdacarrier MAA spectrum Description based on print version record The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory. - Publisher Geometry, Non-Euclidean fast MATHEMATICS / Geometry / General bisacsh Geometry, Non-Euclidean Nichteuklidische Geometrie (DE-588)4042073-5 gnd rswk-swf Nichteuklidische Geometrie (DE-588)4042073-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Coxeter, H S. M. (Harold Scott Macdonald), 1907-2003. Non-Euclidean geometry http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Coxeter, H. S. M., (Harold Scott Macdonald) 1907-2003 Non-Euclidean geometry The MAA is delighted to be the publisher of the sixth edition of this book, updated with a new section 15.9 on the author's useful concept of inversive distance. Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory. - Publisher Geometry, Non-Euclidean fast MATHEMATICS / Geometry / General bisacsh Geometry, Non-Euclidean Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
subject_GND | (DE-588)4042073-5 |
title | Non-Euclidean geometry |
title_auth | Non-Euclidean geometry |
title_exact_search | Non-Euclidean geometry |
title_full | Non-Euclidean geometry H.S.M. Coxeter |
title_fullStr | Non-Euclidean geometry H.S.M. Coxeter |
title_full_unstemmed | Non-Euclidean geometry H.S.M. Coxeter |
title_short | Non-Euclidean geometry |
title_sort | non euclidean geometry |
topic | Geometry, Non-Euclidean fast MATHEMATICS / Geometry / General bisacsh Geometry, Non-Euclidean Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
topic_facet | Geometry, Non-Euclidean MATHEMATICS / Geometry / General Nichteuklidische Geometrie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=759515 |
work_keys_str_mv | AT coxeterhsmharoldscottmacdonald noneuclideangeometry |