Guidelines for evaluating water in pit slope stability:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Collingwood, Vic.
CSIRO Publishing
2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext Inhaltsverzeichnis |
Beschreibung: | 1 online resource |
ISBN: | 064310836X 0643108378 9780643108363 9780643108370 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043034314 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 064310836X |9 0-643-10836-X | ||
020 | |a 064310836X |9 0-643-10836-X | ||
020 | |a 0643108378 |9 0-643-10837-8 | ||
020 | |a 9780643108363 |9 978-0-643-10836-3 | ||
020 | |a 9780643108370 |9 978-0-643-10837-0 | ||
035 | |a (OCoLC)839545444 | ||
035 | |a (DE-599)BVBBV043034314 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 622.292 |2 23 | |
245 | 1 | 0 | |a Guidelines for evaluating water in pit slope stability |c edited by John Read and Geoff Beale |
264 | 1 | |a Collingwood, Vic. |b CSIRO Publishing |c 2013 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Mining |2 bisacsh | |
650 | 4 | |a Strip mining |x Planning | |
650 | 4 | |a Strip mining |x Design and construction | |
650 | 4 | |a Slopes (Soil mechanics) | |
650 | 4 | |a Landslides | |
700 | 1 | |a Read, John Russell Lee |d 1939- |4 edt | |
700 | 1 | |a Beale, Geoff |4 edt | |
710 | 2 | |a Commonwealth Scientific and Industrial Research Organization (Australia) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235 |x Aggregator |3 Volltext |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028458963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028458963 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175393049018368 |
---|---|
adam_text | CONTENTS
PREFACE AND ACKNOWLEDGEMENTS
INTRODUCTION
JOHN READ, GEOFF BEALE, MARC RUEST AND MARTYN ROBOTHAM
1 SCOPE OF LOP PROJECT HYDROGEOLOGICAL STUDIES 1
2 GENERAL IMPACT OF WATER ON MINING 4
2.1 WATER MANAGEMENT ISSUES 4
2.2 CONSEQUENCES OF MI NING BELOW THE WATER TABLE 6
2.3 GENERAL GOALS FOR THE WATER-CONTROL PROGRAM 6
3 COST OF MANAGING WATER IN SLOPE STABILITY 8
3.1 INTRODUCTION 8
3.2 COST-BENEFIT ANALYSIS 8
3.3 AN EXAMPLE OF MANAGING EARLY DEWATERING COSTS 10
3.4 AN EXAMPLE OF LARGE-SCALE COST-BENEFIT ANALYSIS FOR PIT SLOPE
DEPRESSURISATION 13
4 GOALS OF MANAGING WATER IN SLOPE STABILITY 14
4.1 OPPORTUNITIES 14
4.2 PASSIVE PORE PRESSURE CONTROL 14
4.3 ACTIVE PORE PRESSURE CONTROL 15
4.4 MAKING THE DECISION TO IMPLEMENT AN ACTIVE PROGRAM 15
5 GENERAL PLANNING FOR MINE WATER MANAGEMENT 16
1 FRAMEWORK: ASSESSING WATER IN SLOPE STABILITY 19
GEOFF BEALE, MICHAEL PRICE AND JOHN WATERHOUSE
1.1 FUNDAMENTAL PARAMETERS 19
.1.1 POROSITY AND STORAGE PROPERTIES 19
.1.2 PERMEABILITY AND TRANSPORT PROPERTIES 24
.1.3 PORE PRESSURE 34
.1.4 HEAD AND PRESSURE CONDITIONS 35
.1.5 CONTROLS ON PORE PRESSURE 38
.1.6 THE ROLE OF WATER PRESSURE IN SLOPE STABILITY 41
1.2 THE HYDROGEOLOGICAL MODEL 45
1.2.1 BASIC REGIMES 45
1.2.2 GEOLOGY 45
1.2.3 HYDROLOGY 48
1.2.4 HYDRAULIC CONTROLS 49
1.3 MANAGING WATER IN OPEN PIT MINES 49
1.3.1 KEY FACTORS AFFECTING THE WATER-MANAGEMENT PROGRAM 49
1.3.2 GENERAL MINE DEWATERING 51
1.3.3 PIT SLOPE DEPRESSURISATION AND GENERAL MINE DEWATERING 52
1.3.4 STEPS REQUIRED FOR IMPLEMENTING A SLOPE DEPRESSURISATION PROGRAM
56
1.3.5 MINE WATER BALANCE 57
1.3.6 MINE CLOSURE CONSIDERATIONS 58
SITE CHARACTERISATION 65
GREG DOUBEK, ASHLEY CREIGHTON, JEREMY DOWLING, MICHAEL PRICE AND MARK
HAWLEY
2.1 PLANNING FIELD PROGRAMS 65
2.1.1 INTRODUCTION 65
2.1.2 SCALE OF THE INVESTIGATION 68
2.1.3 EARLY-STAGE INVESTIGATION 69
2.1.4 INTEGRATING THE DESIGN PROCESS 69
2.1.5 REQUIRED EFFORT BASED ON PROJECT LEVEL 73
2.1.6 PLANNING FOR A GREENFIELD MINE DEVELOPMENT 78
2.1.7 PLANNING FOR A BROWNFIELD SITE DEVELOPMENT 79
2.1.8 ENVIRONMENTAL BASELINE STUDIES 80
2.1.9 WATER MANAGEMENT PRACTICES DURING THE FIELD INVESTIGATION PROGRAM
81
2.2 IMPLEMENTING FIELD PROGRAMS 82
2.2.1 BACKGROUND 82
2.2.2 DRILLING METHODS 83
2.2.3 PIGGY-BACKING OF DATA COLLECTION 83
2.2.4 DEDICATED HYDROGEOLOGICAL DRILLING PROGRAMS 83
2.2.5 SINGLE-HOLE TESTING METHODS 88
2.2.6 MONITORING INSTALLATIONS 96
2.2.7 DOWNHOLE GEOPHYSICAL LOGGING 107
2.2.8 CROSS-HOLE AND MULTI-HOLE TESTING 119
2.2.9 WATER QUALITY TESTING 126
2.2.10 PILOT DRAINAGE TRIALS 128
2.3 PRESENTATION, ANALYSIS AND STORAGE OF DATA 129
2.3.1 TYPES OF DATA 129
2.3.2 DISPLAY OF TIME-SERIES MONITORING DATA 130
2.3.3 ANALYSIS OF ONE-OFF DATA 140
2.3.4 LEVELS OF DATA ANALYSIS FOR A TYPICAL DEVELOPMENT PROGRAM 145
2.3.5 DATABASES 149
PREPARING A CONCEPTUAL HYDROGEOLOGICAL MODEL 153
GEOFF BEAK, PETE MILMO, MARK RAYNOR, MICHAEL PRICE AND FREDERIC DONZE
3.1 INTRODUCTION 153
3.1.1 BACKGROUND 153
3.1.2 WHAT IS A CONCEPTUAL MODEL? 153
3.1.3 DEVELOPMENT OF A SECTOR-SCALE MODEL 153
3.1.4 AVAILABLE DATA 155
3.2 COMPONENTS OF THE CONCEPTUAL MODEL 155
3.2.1 COMPONENTS OF A LARGER SCALE CONCEPTUAL MODEL 155
3.2.2 THE A-B-C-D CONCEPT OF FRACTURE FLOW 156
3.2.3 COMPONENTS OF THE SECTOR-SCALE CONCEPTUAL MODEL 157
3.3 RESEARCH OUTCOMES FROM DIAVIK 158
3.3.1 BACKGROUND 158
3.3.2 DIAVIK SITE SETTING 159
3.3.3 EFFECTS OF BLASTING 166
3.3.4 INFLUENCEOFFREEZE-BACK 169
3.3.5 RESPONSES TO CHANGES IN HYDRAULIC STRESS 172
3.3.6 OVERALL INTERPRETATION OF THE DIAVIK RESULTS 175
3.4 DISCRETE FRACTURE NETWORK (DFN) MODELLING 179
3.4.1 DFN DEVELOPMENT 179
3.4.2 STOCHASTIC REALISATIONS OF THE DFN 180
3.4.3 THE DFN AS THE BASIS FOR A GROUNDWATER FLOW MODEL 180
3.5 SUMMARY OF CASE STUDIES 181
3.5.1 INTRODUCTION 181
3.5.2 DIAVIK NORTH-WEST WALL: AN INTERCONNECTED ROCK MASS THAT IS
STRONGLY
INFLUENCED BY RECHARGE AND DISCHARGE BOUNDARIES 182
3.5.3 ESCONDIDA EAST WALL: ALTERATION IN THE TRACTURE NETWORK AND
GROUNDWATER
RECHARGE FROM OUTSIDE THE PIT CREST 182
3.5.4 CHUQUICAMATA, A VERY LOW-PER ME ABILITY SYSTEM WITH LITTLE
RECHARGE OR
DISCHARGE 183
3.5.5 ANTAMINA WEST WALL: DRAINAGE OF THE SLOPES INHIBITED BY
STRUCTURAL BARRIERS 183
3.5.6 JWANENG EAST WALL: POORLY PERMEABLE BUT HIGHLY INTERCONNECTED
SHALE SEQUENCE 184
3.5.7 COWAL 184
3.5.8 LAYERED LIMESTONE SEQUENCE IN NEVADA, USA 184
3.5.9 WHALEBACK SOUTH WALL 184
3.6 FACTORS CONTRIBUTING TO A SLOPE-SCALE CONCEPTUAL MODEL 185
3.6.1 REGIMES 185
3.6.2 THE INFLUENCE OF GEOLOGY ON THE CONCEPTUAL MODEL 185
3.6.3 HYDROLOGICAL INPUT: RECHARGE TO THE SLOPE DOMAIN 189
3.6.4 HYDROLOGICAL OUTPUT: THE ROLE OF DISCHARGE IN SLOPE
DEPRESSURISATION 192
3.6.5 HYDRAULICS 194
3.6.6 DEFORMATION 201
3.6.7 TRANSIENT PORE PRESSURES 209
3.7 CONCLUSIONS 211
3.7.1 KEY FACTORS 211
3.7.2 HYDROGEOLOGICAL SETTING 211
3.7.3 NATURE OF THE CONCEPTUAL MODEL 213
4 NUMERICAL MODEL 215
LOREN LORIG, JEREMY DOWLING, GEOFF BEALE AND MICHAEL ROYLE
4.1 PLANNING A NUMERICAL MODEL 215
4.1.1 BACKGROUND 215
4.1.2 SCALE-SPECIFIC APPLICATION OF THE MODEL 217
4.1.3 FOCUSSING THE MODEL ON THE SLOPE DESIGN PROCESS 220
4.1.4 GENERAL PLANNING CONSIDERATIONS 220
4.1.5 TIMEFRAME AND BUDGET CONSIDERATIONS 223
4.1.6 MODELLING WORKFLOW 225
4.1.7 DATA REQUIREMENTS AND SOURCES 225
4.2 DEVELOPMENT OF NUMERICAL GROUNDWATER FLOW MODELS 229
4.2.1 STEPS REQUIRED FOR MODEL DEVELOPMENT 229
4.2.2 DETERMINING MODEL GEOMETRY 231
4.2.3 SETTING THE MODEL DOMAIN AND BOUNDARIES 239
4.2.4 DEFINING THE MESH OR GRID SIZE 244
4.2.5 DETERMINING WHETHER TO RUN STEADY-STATE, TRANSIENT OR UNDRAINED
SIMULATIONS 246
4.2.6 DETERMINING WHETHER THE USE OF AN EQUIVALENT POROUS MEDIUM
(EPM) CODE IS ADEQUATE 249
4.2.7 SELECTING THE APPROPRIATE TIME STEPS (STRESS PERIODS) 251
4.2.8 DECIDING WHETHER A COUPLED MODELLING APPROACH IS REQUIRED 252
4.2.9 INCORPORATING ACTIVE DRAINAGE MEASURES INTO THE MODEL 254
4.2.10 CALIBRATING THE MODEL 254
4.2.11 INTERPRETING MODEL RESULTS 258
4.2.12 VALIDATING MODEL RESULTS 261
4.2.13 USING THE MODEL FOR OPERATIONAL PLANNING 262
4.3 USE OF PORE PRESSURES IN NUMERICAL STABILITY ANALYSES 262
4.3.1 BACKGROUND 262
4.3.2 HOW PORE PRESSURE MODELLING DIFFERS FROM STABILITY ANALYSIS 264
4.3.3 METHODS FOR INPUTTING PORE WATER PRESSURE 264
4.3.4 PORE PRESSURE PROFILES VERSUS PHREATIC SURFACE (WATER TABLE)
ASSUMPTIONS 265
4.3.5 INTEGRATION OF THE HYDRO GEOLOGY AND GEOTEDINICAJ MODELS 269
4.3.6 MODEL CODES 271
4.3.7 REQUIREMENTS FOR GROUNDWATER INPUT TO THE SLOPE DESIGN 272
4.3.8 TRANSFERRING OUTPUT FROM THE HYDROGEOLOGICAL MODEL TO THE
GEOTECHNICAL MODEL 273
4.3.9 INPUT OF TRANSIENT PORE PRESSURES TO THE SLOPE DESIGN MODEL 275
4.3.10 INTRODUCING SLOPE MODEL 277
5 IMPLEMENTATION OF SLOPE DEPRESSURISATION SYSTEMS 279
GEOFF BEAK, JOHN DE SOUZA, ROD SMITH AND BOB ST LOUIS
5.1 PLANNING SLOPE DEPRESSURISATION SYSTEMS 279
5.1.1 GENERAL FACTORS FOR PLANNING 279
5.1.2 INTEGRATION WITH MINE PLANNING 283
5.1.3 DEVELOPMENT OF TARGETS 286
5.2 IMPLEMENTING A GROUNDWATER-CONTROL PROGRAM 291
5.2.1 TYPES OF CONTROL SYSTEMS 291
5.2.2 PASSIVE DRAINAGE INTO THE PIT 295
5.2.3 HORIZONTAL DRAIN HOLES 296
5.2.4 VERTICAL AND STEEP-ANGLED DRAINS 312
5.2.5 DESIGN AND INSTALLATION OF PUMPING WELLS 316
5.2.6 DRAINAGE TUNNELS 333
5.2.7 OPENING UP DRAINAGE PATHWAYS BY BLASTING 337
5.2.8 PROTECTION OF IN-PIT DEWATERING INSTALLATIONS 338
5.2.9 ORGANISATIONAL STRUCTURE 343
5.3 CONTROL OF SURFACE WATER 345
5.3.1 GOALS OF THE SURFACE WATER MANAGEMENT PROGRAM 345
5.3.2 SOURCES OF SURFACE WATER 346
5.3.3 CONTROL OF SURFACE WATER 346
5.3.4 ESTIMATING FLOW RATES 352
5.3.5 CONTROL OF RECHARGE 353
5.3.6 IN-PIT STORMWATER MANAGEMENT AND MAINTENANCE 353
5.3.7 MAINTENANCE OF SURFACE WATER CONTROL SYSTEMS 355
5.3.8 INTEGRATION OF IN-PIT GROUNDWATER AND SURFACE WATER MANAGEMENT 357
5.3.9 PROTECTION OF THE SLOPE FROM EROSION 360
6 MONITORING AND DESIGN RECONCILIATION 363
CHRIS LOMBERG, IAN REAM, RORY O ROURKE AND JOHN READ
6.1 MONITORING 363
6.1.1 OVERVIEW 363
6.1.2 COMPONENTS OF THE MONITORING SYSTEM 363
6.1.3 SETTING UP MONITORING PROGRAMS 366
6.1.4 WATER LEVEL MONITORING 370
6.1.5 TELEMETRY 372
6.1.6 DISPLAY OF MONITORING RESULTS 373
6.2 PERFORMANCE ASSESSMENT 376
6.2.1 OVERVIEW 376
6.2.2 OPERATIONAL GROUNDWATER FLOW MODEL 377
6.2.3 PROCESS FOR ONGOING ASSESSMENT 378
6.3 WATER RISK MANAGEMENT 379
6.3.1 OVERVIEW 379
6.3.2 PROCESS OF RISK ANALYSIS 379
6.3.3 RISK ASSESSMENT METHODOLOGY 380
6.3.4 IDENTIFYING THE RISKS 383
6.3.5 DEFINING THE CONSEQUENCES 386
6.3.6 IMPLEMENTING A WATER RISK MANAGEMENT PROGRAM 387
6.3.7 VALUE OF WATER RISK MANAGEMENT 389
APPENDIX 1 HYDROGEOLOGICAL BACKGROUND TO PIT SLOPE DEPRESSURISATION 391
1 DARCY S LAW 391
2 HEAD AND PRESSURE 391
3 DARCY S LAW IN FIELD SITUATIONS 392
4 FLOW IN THREE DIMENSIONS 394
APPENDIX 2 GUIDELINES FOR FIELD DATA COLLECTION AND INTERPRETATION 398
1 SUMMARY OF DRILLING METHODS COMMONLY USED IN MINE HYDROGEOLOGY
INVESTIGATIONS 398
1.1 DIRECT PUSH METHOD 398
1.2 AUGER DRILLING 398
1.3 SONIC DRILLING 398
1.4 CABLE TOOL DRILLING 398
1.5 ROTARY CORE DRILLING 398
1.6 CONVENTIONAL MUD ROTARY DRILLING 399
1.7 CONVENTIONAL AIR/FOAM DRILLING 399
1.8 FLOODED REVERSE-CIRCULATION DRILLING 399
1.9 DUAL-TUBE REVERSE-CIRCULATION (RC) DRILLING WITH AIR 400
1.10 HORIZONTAL, ANGLED AND DIRECTIONAL DRILLING 401
2 STANDARDISED HYDROGEOLOGICAL LOGGING FORM FOR USE WITH RC DRILLING 401
3 INTERPRETATION OF DATA COLLECTED WHILE RC DRILLING 401
3.1 AIRLIFT PUMPING 401
3.2 SUBMERGENCE 403
3.3 EXAMPLES OF PILOT HOLE COMPARISON AND DATA INTERPRETATION 405
4 GUIDELINES FOR DRILL-STEM INJECTION TESTS 408
5 GUIDELINES FOR RUNNING AND INTERPRETING HYDRAULIC TESTS 410
5.1 SINGLE-HOLE VARIABLE-HEAD TESTS 410
5.2 PACKER TESTS 412
5.3 PUMPING TESTS 418
6 GUIDELINES FOR THE INSTALLATION OF GROUTED-IN VIBRATING WIRE
PIEZOMETER STRINGS 424
6.1 DRILLING METHODS 424
6.2 DEPTH SETTING FOR VIHRATING WIRE SENSORS 424
6.3 INSTALLATION OF MULTI-LEVEL VWPS USING THE GUIDE-TREMIE PIPE METHOD
425
6.4 INSTALLATION OF MULTI-LEVEL VWPS USING THE WIRELINE METHOD 426
6.5 INSTALLATION OF VWP SENSORS IN HORIZONTAL OR POSITIVE INCLINED DRILL
HOLES 429
6.6 INSTALLATION OF MULTI-LEVEL VWPS IN UNDERGROUND BOREHOLES 430
6.7 PREFABRICATED MULTI-LEVEL VWP INSTALLATIONS 430
6.8 COMMONLY USED GROUT MIX 431
7 WESTBAY MULTI-LEVEL SYSTEM 432
7.1 INSTALLATION 432
7.2 OPERATION 432
APPENDIX 3 CASE STUDY: DIAVIK NORTH-WEST WALL 436
1 BACKGROUND 436
1.1 LOCATION 436
1.2 THE NORTH-WEST WALL, A154 PIT 436
1.3 CLIMATE 436
1.4 HYDROGEOLOGICAL SETTING 436
1.5 DEPRESSURISATION OF THE NORTH-WEST WALL 437
1.6 PIEZOMETER INSTALLATIONS IN THE NORTH-WEST WALL 439
2 HYDROGRAPH ANALYSIS 440
2.1 OVERVIEW 440
2.2 ANALYSIS OF SPECIFIC EVENTS 443
3 DFN MODELLING 456
3.1 DFN-BASED DATA ANALYSIS 456
3.2 DFN MODEL BUILDING 471
3.3 DFN MODEL VALIDATION 474
3.4 SUMMARY 482
APPENDIX 4 CASE STUDIES: ESCONDIDA EAST WALL; CHUQUICAMATA;
RADOMIRO TOMIC; ANTAMINA WEST WALL; JWANENG; COWAL;
WHALEBACK SOUTH WALL; LA QUINUA (YANACOCHA) 486
1 ESCONDIDA EAST WALL 486
1.1 BACKGROUND 486
1.2 GEOLOGY AND HYDRO STRATIGRAPHY 486
1.3 DEWATERING AND DEPRESSURISATION 487
1.4 CONCEPTUAL HYDROGEOLOGICAL MODEL 488
1.5 DISCUSSION 492
2 CHUQUICAMATA 493
2.1 BACKGROUND 493
2.2 GEOLOGY AND HYDROSTRAT IGRAPHY 493
2.3 DRAIN HOLE RESULTS 496
2.4 CONCEPTUAL HYDROGEOLOGICAL MODEL 496
2.5 DISCUSSION 500
3 RADOMIRO TOMIC 500
3.1 BACKGROUND 500
3.2 RESPONSE TO MINING PUSHBACKS IN THE SOUTH-EAST AREA OF THE PIT 500
3.3 PIEZOMETRIC RESPONSES IN THE WEST WALL 501
3.4 RESPONSES IN THE NORTHERN SECTOR OF THE WEST WALL 504
4 ANTAMINA WEST WALL 507
4.1 BACKGROUND 507
4.1 GEOMETRY 573
4.2 BOUNDARY CONDITIONS 573
4.3 BUILDING THE MODEL 574
4.4 SIMULATION RESULTS 575
4.5 CONCLUSIONS 575
APPENDIX 7 LESSONS LEARNT AND BASIC GUIDELINES TO MONITORING
FOR GENERAL DEWATERING 578
1 INTRODUCTION 578
2 WATER LEVEL MONITORING 578
2.1 REASONS FOR MONITORING 578
2.2 WATER LEVEL MEASUREMENT - PRACTICAL GUIDELINES 578
2.3 MONITORING FREQUENCY 580
2.4 LOCATION OF PIEZOMETERS 580
2.5 MONITORING OF PUMPING RATES 581
2.6 MONITORING FOR HYDROCHEMICAL FINGERPRINTING 582
3 SUMMARY AND CONCLUSIONS 582
SYMBOLS 583
ABBREVIATIONS 584
GLOSSARY 585
REFERENCES 588
INDEX 594
|
any_adam_object | 1 |
author2 | Read, John Russell Lee 1939- Beale, Geoff |
author2_role | edt edt |
author2_variant | j r l r jrl jrlr g b gb |
author_facet | Read, John Russell Lee 1939- Beale, Geoff |
building | Verbundindex |
bvnumber | BV043034314 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)839545444 (DE-599)BVBBV043034314 |
dewey-full | 622.292 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 622 - Mining and related operations |
dewey-raw | 622.292 |
dewey-search | 622.292 |
dewey-sort | 3622.292 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bergbau / Hüttenwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02057nmm a2200457zc 4500</leader><controlfield tag="001">BV043034314</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">064310836X</subfield><subfield code="9">0-643-10836-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">064310836X</subfield><subfield code="9">0-643-10836-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0643108378</subfield><subfield code="9">0-643-10837-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780643108363</subfield><subfield code="9">978-0-643-10836-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780643108370</subfield><subfield code="9">978-0-643-10837-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839545444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">622.292</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Guidelines for evaluating water in pit slope stability</subfield><subfield code="c">edited by John Read and Geoff Beale</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Collingwood, Vic.</subfield><subfield code="b">CSIRO Publishing</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Mining</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip mining</subfield><subfield code="x">Planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip mining</subfield><subfield code="x">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slopes (Soil mechanics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslides</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Read, John Russell Lee</subfield><subfield code="d">1939-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beale, Geoff</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Commonwealth Scientific and Industrial Research Organization (Australia)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028458963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028458963</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034314 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:34Z |
institution | BVB |
isbn | 064310836X 0643108378 9780643108363 9780643108370 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028458963 |
oclc_num | 839545444 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | CSIRO Publishing |
record_format | marc |
spelling | Guidelines for evaluating water in pit slope stability edited by John Read and Geoff Beale Collingwood, Vic. CSIRO Publishing 2013 1 online resource txt rdacontent c rdamedia cr rdacarrier TECHNOLOGY & ENGINEERING / Mining bisacsh Strip mining Planning Strip mining Design and construction Slopes (Soil mechanics) Landslides Read, John Russell Lee 1939- edt Beale, Geoff edt Commonwealth Scientific and Industrial Research Organization (Australia) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235 Aggregator Volltext SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028458963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Guidelines for evaluating water in pit slope stability TECHNOLOGY & ENGINEERING / Mining bisacsh Strip mining Planning Strip mining Design and construction Slopes (Soil mechanics) Landslides |
title | Guidelines for evaluating water in pit slope stability |
title_auth | Guidelines for evaluating water in pit slope stability |
title_exact_search | Guidelines for evaluating water in pit slope stability |
title_full | Guidelines for evaluating water in pit slope stability edited by John Read and Geoff Beale |
title_fullStr | Guidelines for evaluating water in pit slope stability edited by John Read and Geoff Beale |
title_full_unstemmed | Guidelines for evaluating water in pit slope stability edited by John Read and Geoff Beale |
title_short | Guidelines for evaluating water in pit slope stability |
title_sort | guidelines for evaluating water in pit slope stability |
topic | TECHNOLOGY & ENGINEERING / Mining bisacsh Strip mining Planning Strip mining Design and construction Slopes (Soil mechanics) Landslides |
topic_facet | TECHNOLOGY & ENGINEERING / Mining Strip mining Planning Strip mining Design and construction Slopes (Soil mechanics) Landslides |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=673235 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028458963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT readjohnrusselllee guidelinesforevaluatingwaterinpitslopestability AT bealegeoff guidelinesforevaluatingwaterinpitslopestability AT commonwealthscientificandindustrialresearchorganizationaustralia guidelinesforevaluatingwaterinpitslopestability |