Lotka-Volterra and Related Systems: Recent Developments in Population Dynamics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2013
|
Schriftenreihe: | De Gruyter series in mathematics and life sciences
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (244 pages) |
ISBN: | 3110269848 9783110269840 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043034022 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 3110269848 |c electronic bk. |9 3-11-026984-8 | ||
020 | |a 9783110269840 |c electronic bk. |9 978-3-11-026984-0 | ||
035 | |a (OCoLC)851970552 | ||
035 | |a (DE-599)BVBBV043034022 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 577.8/8 |2 23 | |
100 | 1 | |a Hou, Zhanyuan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lotka-Volterra and Related Systems |b Recent Developments in Population Dynamics |
264 | 1 | |a Berlin |b De Gruyter |c 2013 | |
300 | |a 1 online resource (244 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in mathematics and life sciences | |
500 | |a Print version record | ||
505 | 8 | |a Preface; Permanence, global attraction and stability; 1 Introduction; 2 Existence of a compact uniform attractor; 3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence and permanence; 5 Necessary conditions for permanence of Lotka-Volterra systems; 6 Sufficient condition for permanence of Lotka-Volterra systems; 7 Further notes; 8 Global attraction and stability of Lotka-Volterra systems; 9 Global stability by Lyapunov functions; 10 Global stability by split Lyapunov functions; 10.1 Checking the conditions (10.2) and (10.8); 10.2 Examples | |
505 | 8 | |a 11 Global stability of competitive Lotka-Volterra systems12 Global attraction of competitive Lotka-Volterra systems; 13 Some notes; Bibliography; Competitive Lotka-Volterra systems with periodic coefficients; 1 Introduction; 2 The autonomous model. The logistic equation; 3 Two species periodic models; 4 Competitive exclusion; 5 One species extinction in three-dimensional models; 6 The impulsive logistic equation; 7 Two species systems with impulsive effects. A look at the N-dimensional case; 8 The influence of impulsive perturbations on extinction in three-species models; Bibliography | |
505 | 8 | |a Fixed points, periodic points and chaotic dynamics for continuous maps with applications to population dynamics1 Introduction; 2 Notation; 3 Search of fixed points for maps expansive along one direction; 4 The planar case; 4.1 Stretching along the paths and variants; 4.2 The Crossing Lemma; 5 The N-dimensional setting: Intersection Lemma; 5.1 Zero-sets of maps depending on parameters; 5.2 Stretching along the paths in the N-dimensional case; 6 Chaotic dynamics for continuous maps; 7 Definitions and main results; 8 Symbolic dynamics; 9 On various notions of chaos; 10 Linked twist maps | |
505 | 8 | |a 11 Examples from the ODEs12 Predator-prey model; 12.1 The effects of a periodic harvesting; 12.2 Technical details and proofs; Bibliography; Index | |
505 | 8 | |a This book facilitates research in the general area of population dynamics by presenting some of the recent developments involving theories, methods and application in this important area of research. The underlying common feature of the studies included in the book is that they are related, either directly or indirectly, to the well-known Lotka-Volterra systems which offer a variety of mathematical concepts from both theoretical and application points of view | |
650 | 7 | |a NATURE / Ecology |2 bisacsh | |
650 | 7 | |a NATURE / Ecosystems & Habitats / Wilderness |2 bisacsh | |
650 | 7 | |a SCIENCE / Environmental Science |2 bisacsh | |
650 | 7 | |a SCIENCE / Life Sciences / Ecology |2 bisacsh | |
650 | 7 | |a Lotka-Volterra equations |2 fast | |
650 | 7 | |a Population biology / Mathematical models |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Ökologie | |
650 | 4 | |a Lotka-Volterra equations | |
650 | 4 | |a Population biology |x Mathematical models | |
700 | 1 | |a Lisena, Benedetta |e Sonstige |4 oth | |
700 | 1 | |a Pireddu, Marina |e Sonstige |4 oth | |
700 | 1 | |a Zanolin, Fabio |e Sonstige |4 oth | |
700 | 1 | |a Ahmad, Shair |e Sonstige |4 oth | |
700 | 1 | |a Stamova, Ivanka |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Hou, Zhanyuan |t Lotka-Volterra and Related Systems : Recent Developments in Population Dynamics |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028458670 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175392548847616 |
---|---|
any_adam_object | |
author | Hou, Zhanyuan |
author_facet | Hou, Zhanyuan |
author_role | aut |
author_sort | Hou, Zhanyuan |
author_variant | z h zh |
building | Verbundindex |
bvnumber | BV043034022 |
collection | ZDB-4-EBA |
contents | Preface; Permanence, global attraction and stability; 1 Introduction; 2 Existence of a compact uniform attractor; 3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence and permanence; 5 Necessary conditions for permanence of Lotka-Volterra systems; 6 Sufficient condition for permanence of Lotka-Volterra systems; 7 Further notes; 8 Global attraction and stability of Lotka-Volterra systems; 9 Global stability by Lyapunov functions; 10 Global stability by split Lyapunov functions; 10.1 Checking the conditions (10.2) and (10.8); 10.2 Examples 11 Global stability of competitive Lotka-Volterra systems12 Global attraction of competitive Lotka-Volterra systems; 13 Some notes; Bibliography; Competitive Lotka-Volterra systems with periodic coefficients; 1 Introduction; 2 The autonomous model. The logistic equation; 3 Two species periodic models; 4 Competitive exclusion; 5 One species extinction in three-dimensional models; 6 The impulsive logistic equation; 7 Two species systems with impulsive effects. A look at the N-dimensional case; 8 The influence of impulsive perturbations on extinction in three-species models; Bibliography Fixed points, periodic points and chaotic dynamics for continuous maps with applications to population dynamics1 Introduction; 2 Notation; 3 Search of fixed points for maps expansive along one direction; 4 The planar case; 4.1 Stretching along the paths and variants; 4.2 The Crossing Lemma; 5 The N-dimensional setting: Intersection Lemma; 5.1 Zero-sets of maps depending on parameters; 5.2 Stretching along the paths in the N-dimensional case; 6 Chaotic dynamics for continuous maps; 7 Definitions and main results; 8 Symbolic dynamics; 9 On various notions of chaos; 10 Linked twist maps 11 Examples from the ODEs12 Predator-prey model; 12.1 The effects of a periodic harvesting; 12.2 Technical details and proofs; Bibliography; Index This book facilitates research in the general area of population dynamics by presenting some of the recent developments involving theories, methods and application in this important area of research. The underlying common feature of the studies included in the book is that they are related, either directly or indirectly, to the well-known Lotka-Volterra systems which offer a variety of mathematical concepts from both theoretical and application points of view |
ctrlnum | (OCoLC)851970552 (DE-599)BVBBV043034022 |
dewey-full | 577.8/8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577.8/8 |
dewey-search | 577.8/8 |
dewey-sort | 3577.8 18 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04736nmm a2200601zc 4500</leader><controlfield tag="001">BV043034022</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110269848</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-026984-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110269840</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-026984-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)851970552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034022</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577.8/8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hou, Zhanyuan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lotka-Volterra and Related Systems</subfield><subfield code="b">Recent Developments in Population Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (244 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in mathematics and life sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; Permanence, global attraction and stability; 1 Introduction; 2 Existence of a compact uniform attractor; 3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence and permanence; 5 Necessary conditions for permanence of Lotka-Volterra systems; 6 Sufficient condition for permanence of Lotka-Volterra systems; 7 Further notes; 8 Global attraction and stability of Lotka-Volterra systems; 9 Global stability by Lyapunov functions; 10 Global stability by split Lyapunov functions; 10.1 Checking the conditions (10.2) and (10.8); 10.2 Examples</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11 Global stability of competitive Lotka-Volterra systems12 Global attraction of competitive Lotka-Volterra systems; 13 Some notes; Bibliography; Competitive Lotka-Volterra systems with periodic coefficients; 1 Introduction; 2 The autonomous model. The logistic equation; 3 Two species periodic models; 4 Competitive exclusion; 5 One species extinction in three-dimensional models; 6 The impulsive logistic equation; 7 Two species systems with impulsive effects. A look at the N-dimensional case; 8 The influence of impulsive perturbations on extinction in three-species models; Bibliography</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fixed points, periodic points and chaotic dynamics for continuous maps with applications to population dynamics1 Introduction; 2 Notation; 3 Search of fixed points for maps expansive along one direction; 4 The planar case; 4.1 Stretching along the paths and variants; 4.2 The Crossing Lemma; 5 The N-dimensional setting: Intersection Lemma; 5.1 Zero-sets of maps depending on parameters; 5.2 Stretching along the paths in the N-dimensional case; 6 Chaotic dynamics for continuous maps; 7 Definitions and main results; 8 Symbolic dynamics; 9 On various notions of chaos; 10 Linked twist maps</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11 Examples from the ODEs12 Predator-prey model; 12.1 The effects of a periodic harvesting; 12.2 Technical details and proofs; Bibliography; Index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book facilitates research in the general area of population dynamics by presenting some of the recent developments involving theories, methods and application in this important area of research. The underlying common feature of the studies included in the book is that they are related, either directly or indirectly, to the well-known Lotka-Volterra systems which offer a variety of mathematical concepts from both theoretical and application points of view</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Ecology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Ecosystems & Habitats / Wilderness</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Environmental Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / Ecology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lotka-Volterra equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Population biology / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lotka-Volterra equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population biology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lisena, Benedetta</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pireddu, Marina</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanolin, Fabio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmad, Shair</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stamova, Ivanka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Hou, Zhanyuan</subfield><subfield code="t">Lotka-Volterra and Related Systems : Recent Developments in Population Dynamics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028458670</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034022 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:34Z |
institution | BVB |
isbn | 3110269848 9783110269840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028458670 |
oclc_num | 851970552 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (244 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter series in mathematics and life sciences |
spelling | Hou, Zhanyuan Verfasser aut Lotka-Volterra and Related Systems Recent Developments in Population Dynamics Berlin De Gruyter 2013 1 online resource (244 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in mathematics and life sciences Print version record Preface; Permanence, global attraction and stability; 1 Introduction; 2 Existence of a compact uniform attractor; 3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence and permanence; 5 Necessary conditions for permanence of Lotka-Volterra systems; 6 Sufficient condition for permanence of Lotka-Volterra systems; 7 Further notes; 8 Global attraction and stability of Lotka-Volterra systems; 9 Global stability by Lyapunov functions; 10 Global stability by split Lyapunov functions; 10.1 Checking the conditions (10.2) and (10.8); 10.2 Examples 11 Global stability of competitive Lotka-Volterra systems12 Global attraction of competitive Lotka-Volterra systems; 13 Some notes; Bibliography; Competitive Lotka-Volterra systems with periodic coefficients; 1 Introduction; 2 The autonomous model. The logistic equation; 3 Two species periodic models; 4 Competitive exclusion; 5 One species extinction in three-dimensional models; 6 The impulsive logistic equation; 7 Two species systems with impulsive effects. A look at the N-dimensional case; 8 The influence of impulsive perturbations on extinction in three-species models; Bibliography Fixed points, periodic points and chaotic dynamics for continuous maps with applications to population dynamics1 Introduction; 2 Notation; 3 Search of fixed points for maps expansive along one direction; 4 The planar case; 4.1 Stretching along the paths and variants; 4.2 The Crossing Lemma; 5 The N-dimensional setting: Intersection Lemma; 5.1 Zero-sets of maps depending on parameters; 5.2 Stretching along the paths in the N-dimensional case; 6 Chaotic dynamics for continuous maps; 7 Definitions and main results; 8 Symbolic dynamics; 9 On various notions of chaos; 10 Linked twist maps 11 Examples from the ODEs12 Predator-prey model; 12.1 The effects of a periodic harvesting; 12.2 Technical details and proofs; Bibliography; Index This book facilitates research in the general area of population dynamics by presenting some of the recent developments involving theories, methods and application in this important area of research. The underlying common feature of the studies included in the book is that they are related, either directly or indirectly, to the well-known Lotka-Volterra systems which offer a variety of mathematical concepts from both theoretical and application points of view NATURE / Ecology bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh SCIENCE / Environmental Science bisacsh SCIENCE / Life Sciences / Ecology bisacsh Lotka-Volterra equations fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Lotka-Volterra equations Population biology Mathematical models Lisena, Benedetta Sonstige oth Pireddu, Marina Sonstige oth Zanolin, Fabio Sonstige oth Ahmad, Shair Sonstige oth Stamova, Ivanka Sonstige oth Erscheint auch als Druck-Ausgabe Hou, Zhanyuan Lotka-Volterra and Related Systems : Recent Developments in Population Dynamics http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282 Aggregator Volltext |
spellingShingle | Hou, Zhanyuan Lotka-Volterra and Related Systems Recent Developments in Population Dynamics Preface; Permanence, global attraction and stability; 1 Introduction; 2 Existence of a compact uniform attractor; 3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence and permanence; 5 Necessary conditions for permanence of Lotka-Volterra systems; 6 Sufficient condition for permanence of Lotka-Volterra systems; 7 Further notes; 8 Global attraction and stability of Lotka-Volterra systems; 9 Global stability by Lyapunov functions; 10 Global stability by split Lyapunov functions; 10.1 Checking the conditions (10.2) and (10.8); 10.2 Examples 11 Global stability of competitive Lotka-Volterra systems12 Global attraction of competitive Lotka-Volterra systems; 13 Some notes; Bibliography; Competitive Lotka-Volterra systems with periodic coefficients; 1 Introduction; 2 The autonomous model. The logistic equation; 3 Two species periodic models; 4 Competitive exclusion; 5 One species extinction in three-dimensional models; 6 The impulsive logistic equation; 7 Two species systems with impulsive effects. A look at the N-dimensional case; 8 The influence of impulsive perturbations on extinction in three-species models; Bibliography Fixed points, periodic points and chaotic dynamics for continuous maps with applications to population dynamics1 Introduction; 2 Notation; 3 Search of fixed points for maps expansive along one direction; 4 The planar case; 4.1 Stretching along the paths and variants; 4.2 The Crossing Lemma; 5 The N-dimensional setting: Intersection Lemma; 5.1 Zero-sets of maps depending on parameters; 5.2 Stretching along the paths in the N-dimensional case; 6 Chaotic dynamics for continuous maps; 7 Definitions and main results; 8 Symbolic dynamics; 9 On various notions of chaos; 10 Linked twist maps 11 Examples from the ODEs12 Predator-prey model; 12.1 The effects of a periodic harvesting; 12.2 Technical details and proofs; Bibliography; Index This book facilitates research in the general area of population dynamics by presenting some of the recent developments involving theories, methods and application in this important area of research. The underlying common feature of the studies included in the book is that they are related, either directly or indirectly, to the well-known Lotka-Volterra systems which offer a variety of mathematical concepts from both theoretical and application points of view NATURE / Ecology bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh SCIENCE / Environmental Science bisacsh SCIENCE / Life Sciences / Ecology bisacsh Lotka-Volterra equations fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Lotka-Volterra equations Population biology Mathematical models |
title | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_auth | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_exact_search | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_full | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_fullStr | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_full_unstemmed | Lotka-Volterra and Related Systems Recent Developments in Population Dynamics |
title_short | Lotka-Volterra and Related Systems |
title_sort | lotka volterra and related systems recent developments in population dynamics |
title_sub | Recent Developments in Population Dynamics |
topic | NATURE / Ecology bisacsh NATURE / Ecosystems & Habitats / Wilderness bisacsh SCIENCE / Environmental Science bisacsh SCIENCE / Life Sciences / Ecology bisacsh Lotka-Volterra equations fast Population biology / Mathematical models fast Mathematisches Modell Ökologie Lotka-Volterra equations Population biology Mathematical models |
topic_facet | NATURE / Ecology NATURE / Ecosystems & Habitats / Wilderness SCIENCE / Environmental Science SCIENCE / Life Sciences / Ecology Lotka-Volterra equations Population biology / Mathematical models Mathematisches Modell Ökologie Population biology Mathematical models |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=604282 |
work_keys_str_mv | AT houzhanyuan lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics AT lisenabenedetta lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics AT pireddumarina lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics AT zanolinfabio lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics AT ahmadshair lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics AT stamovaivanka lotkavolterraandrelatedsystemsrecentdevelopmentsinpopulationdynamics |