Green's Functions: Construction and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
2012
|
Schlagworte: | |
Online-Zugang: | FHD01 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (448 pages) |
ISBN: | 9783110253399 3110253399 311025302X 9783110253023 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043032203 | ||
003 | DE-604 | ||
005 | 20230302 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783110253399 |c electronic bk. |9 978-3-11-025339-9 | ||
020 | |a 3110253399 |c electronic bk. |9 3-11-025339-9 | ||
020 | |a 311025302X |9 3-11-025302-X | ||
020 | |a 9783110253023 |9 978-3-11-025302-3 | ||
035 | |a (OCoLC)784886949 | ||
035 | |a (DE-599)BVBBV043032203 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-1050 | ||
082 | 0 | |a 515.353 | |
082 | 0 | |a 515/.353 | |
100 | 1 | |a Melnikov, Yuri A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Green's Functions |b Construction and Applications |
264 | 1 | |a Berlin |b De Gruyter |c 2012 | |
300 | |a 1 online resource (448 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Preface; 0 Introduction; 1 Green's Functions for ODE; 1.1 Standard Procedure for Construction; 1.2 Symmetry of Green's Functions; 1.3 Alternative Construction Procedure; 1.4 Chapter Exercises; 2 The Laplace Equation; 2.1 Method of Images; 2.2 Conformal Mapping; 2.3 Method of Eigenfunction Expansion; 2.4 Three-Dimensional Problems; 2.5 Chapter Exercises; 3. The Static Klein-Gordon Equation; 3.1 Definition of Green's Function; 3.2 Method of Images; 3.3 Method of Eigenfunction Expansion; 3.4 Three-Dimensional Problems; 3.5 Chapter Exercises; 4 Higher Order Equations | |
505 | 8 | |a 4.1 Definition of Green's Function4.2 Rectangular-Shaped Regions; 4.3 Circular-Shaped Regions; 4.4 The equation?2?2w(P) +?4w(P) = 0; 4.5 Elliptic Systems; 4.6 Chapter Exercises; 5 Multi-Point-Posed Problems; 5.1 Matrix of Green's Type; 5.2 Influence Function of a Multi-Span Beam; 5.3 Further Extension of the Formalism; 5.4 Chapter Exercises; 6 PDE Matrices of Green's type; 6.1 Introductory Comments; 6.2 Construction of Matrices of Green's Type; 6.3 Fields of Potential on Surfaces of Revolution; 6.4 Chapter Exercises; 7 Diffusion Equation; 7.1 Basics of the Laplace Transform | |
505 | 8 | |a 7.2 Green's Functions7.3 Matrices of Green's Type; 7.4 Chapter Exercises; 8 Black-Scholes Equation; 8.1 The Fundamental Solution; 8.2 Other Green's Functions; 8.3 A Methodologically Valuable Example; 8.4 Numerical Implementations; 8.5 Chapter Exercises; Appendix Answers to Chapter Exercises; Bibliography; Index | |
505 | 8 | |a This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations | |
650 | 7 | |a MATHEMATICS / Differential Equations / Partial |2 bisacsh | |
650 | 7 | |a Green's functions |2 fast | |
650 | 4 | |a Green's functions | |
650 | 0 | 7 | |a Green-Funktion |0 (DE-588)4158123-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Green-Funktion |0 (DE-588)4158123-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Melnikov, Max Y. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Melnikov, Yuri A |t . Green's Functions : Construction and Applications |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=448094 |x Aggregator |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-4-EBA | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028456854 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=887131 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175389286727680 |
---|---|
any_adam_object | |
author | Melnikov, Yuri A. |
author_facet | Melnikov, Yuri A. |
author_role | aut |
author_sort | Melnikov, Yuri A. |
author_variant | y a m ya yam |
building | Verbundindex |
bvnumber | BV043032203 |
collection | ZDB-30-PQE ZDB-4-EBA |
contents | Preface; 0 Introduction; 1 Green's Functions for ODE; 1.1 Standard Procedure for Construction; 1.2 Symmetry of Green's Functions; 1.3 Alternative Construction Procedure; 1.4 Chapter Exercises; 2 The Laplace Equation; 2.1 Method of Images; 2.2 Conformal Mapping; 2.3 Method of Eigenfunction Expansion; 2.4 Three-Dimensional Problems; 2.5 Chapter Exercises; 3. The Static Klein-Gordon Equation; 3.1 Definition of Green's Function; 3.2 Method of Images; 3.3 Method of Eigenfunction Expansion; 3.4 Three-Dimensional Problems; 3.5 Chapter Exercises; 4 Higher Order Equations 4.1 Definition of Green's Function4.2 Rectangular-Shaped Regions; 4.3 Circular-Shaped Regions; 4.4 The equation?2?2w(P) +?4w(P) = 0; 4.5 Elliptic Systems; 4.6 Chapter Exercises; 5 Multi-Point-Posed Problems; 5.1 Matrix of Green's Type; 5.2 Influence Function of a Multi-Span Beam; 5.3 Further Extension of the Formalism; 5.4 Chapter Exercises; 6 PDE Matrices of Green's type; 6.1 Introductory Comments; 6.2 Construction of Matrices of Green's Type; 6.3 Fields of Potential on Surfaces of Revolution; 6.4 Chapter Exercises; 7 Diffusion Equation; 7.1 Basics of the Laplace Transform 7.2 Green's Functions7.3 Matrices of Green's Type; 7.4 Chapter Exercises; 8 Black-Scholes Equation; 8.1 The Fundamental Solution; 8.2 Other Green's Functions; 8.3 A Methodologically Valuable Example; 8.4 Numerical Implementations; 8.5 Chapter Exercises; Appendix Answers to Chapter Exercises; Bibliography; Index This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations |
ctrlnum | (OCoLC)784886949 (DE-599)BVBBV043032203 |
dewey-full | 515.353 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 515/.353 |
dewey-search | 515.353 515/.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03960nmm a2200529zc 4500</leader><controlfield tag="001">BV043032203</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230302 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110253399</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-025339-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110253399</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-025339-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311025302X</subfield><subfield code="9">3-11-025302-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110253023</subfield><subfield code="9">978-3-11-025302-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)784886949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043032203</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Melnikov, Yuri A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green's Functions</subfield><subfield code="b">Construction and Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (448 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; 0 Introduction; 1 Green's Functions for ODE; 1.1 Standard Procedure for Construction; 1.2 Symmetry of Green's Functions; 1.3 Alternative Construction Procedure; 1.4 Chapter Exercises; 2 The Laplace Equation; 2.1 Method of Images; 2.2 Conformal Mapping; 2.3 Method of Eigenfunction Expansion; 2.4 Three-Dimensional Problems; 2.5 Chapter Exercises; 3. The Static Klein-Gordon Equation; 3.1 Definition of Green's Function; 3.2 Method of Images; 3.3 Method of Eigenfunction Expansion; 3.4 Three-Dimensional Problems; 3.5 Chapter Exercises; 4 Higher Order Equations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Definition of Green's Function4.2 Rectangular-Shaped Regions; 4.3 Circular-Shaped Regions; 4.4 The equation?2?2w(P) +?4w(P) = 0; 4.5 Elliptic Systems; 4.6 Chapter Exercises; 5 Multi-Point-Posed Problems; 5.1 Matrix of Green's Type; 5.2 Influence Function of a Multi-Span Beam; 5.3 Further Extension of the Formalism; 5.4 Chapter Exercises; 6 PDE Matrices of Green's type; 6.1 Introductory Comments; 6.2 Construction of Matrices of Green's Type; 6.3 Fields of Potential on Surfaces of Revolution; 6.4 Chapter Exercises; 7 Diffusion Equation; 7.1 Basics of the Laplace Transform</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Green's Functions7.3 Matrices of Green's Type; 7.4 Chapter Exercises; 8 Black-Scholes Equation; 8.1 The Fundamental Solution; 8.2 Other Green's Functions; 8.3 A Methodologically Valuable Example; 8.4 Numerical Implementations; 8.5 Chapter Exercises; Appendix Answers to Chapter Exercises; Bibliography; Index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / Partial</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Green's functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green's functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melnikov, Max Y.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Melnikov, Yuri A</subfield><subfield code="t">. Green's Functions : Construction and Applications</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=448094</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028456854</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=887131</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043032203 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:30Z |
institution | BVB |
isbn | 9783110253399 3110253399 311025302X 9783110253023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028456854 |
oclc_num | 784886949 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-1050 |
owner_facet | DE-1046 DE-1047 DE-1050 |
physical | 1 online resource (448 pages) |
psigel | ZDB-30-PQE ZDB-4-EBA FAW_PDA_EBA ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | De Gruyter |
record_format | marc |
spelling | Melnikov, Yuri A. Verfasser aut Green's Functions Construction and Applications Berlin De Gruyter 2012 1 online resource (448 pages) txt rdacontent c rdamedia cr rdacarrier Print version record Preface; 0 Introduction; 1 Green's Functions for ODE; 1.1 Standard Procedure for Construction; 1.2 Symmetry of Green's Functions; 1.3 Alternative Construction Procedure; 1.4 Chapter Exercises; 2 The Laplace Equation; 2.1 Method of Images; 2.2 Conformal Mapping; 2.3 Method of Eigenfunction Expansion; 2.4 Three-Dimensional Problems; 2.5 Chapter Exercises; 3. The Static Klein-Gordon Equation; 3.1 Definition of Green's Function; 3.2 Method of Images; 3.3 Method of Eigenfunction Expansion; 3.4 Three-Dimensional Problems; 3.5 Chapter Exercises; 4 Higher Order Equations 4.1 Definition of Green's Function4.2 Rectangular-Shaped Regions; 4.3 Circular-Shaped Regions; 4.4 The equation?2?2w(P) +?4w(P) = 0; 4.5 Elliptic Systems; 4.6 Chapter Exercises; 5 Multi-Point-Posed Problems; 5.1 Matrix of Green's Type; 5.2 Influence Function of a Multi-Span Beam; 5.3 Further Extension of the Formalism; 5.4 Chapter Exercises; 6 PDE Matrices of Green's type; 6.1 Introductory Comments; 6.2 Construction of Matrices of Green's Type; 6.3 Fields of Potential on Surfaces of Revolution; 6.4 Chapter Exercises; 7 Diffusion Equation; 7.1 Basics of the Laplace Transform 7.2 Green's Functions7.3 Matrices of Green's Type; 7.4 Chapter Exercises; 8 Black-Scholes Equation; 8.1 The Fundamental Solution; 8.2 Other Green's Functions; 8.3 A Methodologically Valuable Example; 8.4 Numerical Implementations; 8.5 Chapter Exercises; Appendix Answers to Chapter Exercises; Bibliography; Index This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations MATHEMATICS / Differential Equations / Partial bisacsh Green's functions fast Green's functions Green-Funktion (DE-588)4158123-4 gnd rswk-swf Green-Funktion (DE-588)4158123-4 s 1\p DE-604 Melnikov, Max Y. Sonstige oth Erscheint auch als Druck-Ausgabe Melnikov, Yuri A . Green's Functions : Construction and Applications http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=448094 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Melnikov, Yuri A. Green's Functions Construction and Applications Preface; 0 Introduction; 1 Green's Functions for ODE; 1.1 Standard Procedure for Construction; 1.2 Symmetry of Green's Functions; 1.3 Alternative Construction Procedure; 1.4 Chapter Exercises; 2 The Laplace Equation; 2.1 Method of Images; 2.2 Conformal Mapping; 2.3 Method of Eigenfunction Expansion; 2.4 Three-Dimensional Problems; 2.5 Chapter Exercises; 3. The Static Klein-Gordon Equation; 3.1 Definition of Green's Function; 3.2 Method of Images; 3.3 Method of Eigenfunction Expansion; 3.4 Three-Dimensional Problems; 3.5 Chapter Exercises; 4 Higher Order Equations 4.1 Definition of Green's Function4.2 Rectangular-Shaped Regions; 4.3 Circular-Shaped Regions; 4.4 The equation?2?2w(P) +?4w(P) = 0; 4.5 Elliptic Systems; 4.6 Chapter Exercises; 5 Multi-Point-Posed Problems; 5.1 Matrix of Green's Type; 5.2 Influence Function of a Multi-Span Beam; 5.3 Further Extension of the Formalism; 5.4 Chapter Exercises; 6 PDE Matrices of Green's type; 6.1 Introductory Comments; 6.2 Construction of Matrices of Green's Type; 6.3 Fields of Potential on Surfaces of Revolution; 6.4 Chapter Exercises; 7 Diffusion Equation; 7.1 Basics of the Laplace Transform 7.2 Green's Functions7.3 Matrices of Green's Type; 7.4 Chapter Exercises; 8 Black-Scholes Equation; 8.1 The Fundamental Solution; 8.2 Other Green's Functions; 8.3 A Methodologically Valuable Example; 8.4 Numerical Implementations; 8.5 Chapter Exercises; Appendix Answers to Chapter Exercises; Bibliography; Index This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations MATHEMATICS / Differential Equations / Partial bisacsh Green's functions fast Green's functions Green-Funktion (DE-588)4158123-4 gnd |
subject_GND | (DE-588)4158123-4 |
title | Green's Functions Construction and Applications |
title_auth | Green's Functions Construction and Applications |
title_exact_search | Green's Functions Construction and Applications |
title_full | Green's Functions Construction and Applications |
title_fullStr | Green's Functions Construction and Applications |
title_full_unstemmed | Green's Functions Construction and Applications |
title_short | Green's Functions |
title_sort | green s functions construction and applications |
title_sub | Construction and Applications |
topic | MATHEMATICS / Differential Equations / Partial bisacsh Green's functions fast Green's functions Green-Funktion (DE-588)4158123-4 gnd |
topic_facet | MATHEMATICS / Differential Equations / Partial Green's functions Green-Funktion |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=448094 |
work_keys_str_mv | AT melnikovyuria greensfunctionsconstructionandapplications AT melnikovmaxy greensfunctionsconstructionandapplications |