When least is best: how mathematicians discovered many clever ways to make things as small (or as large) as possible
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2007, c2004
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | "First paperback printing, with a new preface by the author, 2007." Description based on print version record |
Beschreibung: | 1 online resource (xxvi, 372 p.) ill |
ISBN: | 0691130523 1283303329 1400841364 9780691130521 9781283303323 9781400841363 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043031909 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2007 |||| o||u| ||||||eng d | ||
020 | |a 0691130523 |9 0-691-13052-3 | ||
020 | |a 1283303329 |9 1-283-30332-9 | ||
020 | |a 1400841364 |c electronic bk. |9 1-4008-4136-4 | ||
020 | |a 9780691130521 |9 978-0-691-13052-1 | ||
020 | |a 9781283303323 |9 978-1-283-30332-3 | ||
020 | |a 9781400841363 |c electronic bk. |9 978-1-4008-4136-3 | ||
035 | |a (OCoLC)758334112 | ||
035 | |a (DE-599)BVBBV043031909 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.66 | |
082 | 0 | |a 511/.66 | |
100 | 1 | |a Nahin, Paul J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a When least is best |b how mathematicians discovered many clever ways to make things as small (or as large) as possible |c Paul J. Nahin ; with a new preface by the author |
264 | 1 | |a Princeton |b Princeton University Press |c 2007, c2004 | |
300 | |a 1 online resource (xxvi, 372 p.) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "First paperback printing, with a new preface by the author, 2007." | ||
500 | |a Description based on print version record | ||
505 | 8 | |a Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem | |
505 | 8 | |a What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Combinatorics |2 bisacsh | |
650 | 7 | |a MATHEMATICS / History & Philosophy |2 bisacsh | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Maxima and minima | |
650 | 4 | |a Mathematics |x History | |
650 | 4 | |a Calculus |x History | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Extremwert |0 (DE-588)4137272-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Extremwert |0 (DE-588)4137272-4 |D s |
689 | 0 | 1 | |a Geschichte |A z |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Nahin, Paul J |t . When Least Is Best : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028456560 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175388824305664 |
---|---|
any_adam_object | |
author | Nahin, Paul J. |
author_facet | Nahin, Paul J. |
author_role | aut |
author_sort | Nahin, Paul J. |
author_variant | p j n pj pjn |
building | Verbundindex |
bvnumber | BV043031909 |
collection | ZDB-4-EBA |
contents | Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible |
ctrlnum | (OCoLC)758334112 (DE-599)BVBBV043031909 |
dewey-full | 511.66 511/.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.66 511/.66 |
dewey-search | 511.66 511/.66 |
dewey-sort | 3511.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03996nmm a2200625zc 4500</leader><controlfield tag="001">BV043031909</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691130523</subfield><subfield code="9">0-691-13052-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283303329</subfield><subfield code="9">1-283-30332-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400841364</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4136-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691130521</subfield><subfield code="9">978-0-691-13052-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283303323</subfield><subfield code="9">978-1-283-30332-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400841363</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4136-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)758334112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043031909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.66</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.66</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nahin, Paul J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">When least is best</subfield><subfield code="b">how mathematicians discovered many clever ways to make things as small (or as large) as possible</subfield><subfield code="c">Paul J. Nahin ; with a new preface by the author</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2007, c2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvi, 372 p.)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"First paperback printing, with a new preface by the author, 2007."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Combinatorics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / History & Philosophy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Nahin, Paul J</subfield><subfield code="t">. When Least Is Best : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028456560</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043031909 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:30Z |
institution | BVB |
isbn | 0691130523 1283303329 1400841364 9780691130521 9781283303323 9781400841363 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028456560 |
oclc_num | 758334112 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xxvi, 372 p.) ill |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press |
record_format | marc |
spelling | Nahin, Paul J. Verfasser aut When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible Paul J. Nahin ; with a new preface by the author Princeton Princeton University Press 2007, c2004 1 online resource (xxvi, 372 p.) ill txt rdacontent c rdamedia cr rdacarrier "First paperback printing, with a new preface by the author, 2007." Description based on print version record Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible Geschichte gnd rswk-swf Mathematics MATHEMATICS / Combinatorics bisacsh MATHEMATICS / History & Philosophy bisacsh Geschichte Mathematik Maxima and minima Mathematics History Calculus History Mathematical optimization Extremwert (DE-588)4137272-4 gnd rswk-swf Extremwert (DE-588)4137272-4 s Geschichte z 1\p DE-604 Erscheint auch als Druck-Ausgabe Nahin, Paul J . When Least Is Best : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nahin, Paul J. When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible Mathematics MATHEMATICS / Combinatorics bisacsh MATHEMATICS / History & Philosophy bisacsh Geschichte Mathematik Maxima and minima Mathematics History Calculus History Mathematical optimization Extremwert (DE-588)4137272-4 gnd |
subject_GND | (DE-588)4137272-4 |
title | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible |
title_auth | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible |
title_exact_search | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible |
title_full | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible Paul J. Nahin ; with a new preface by the author |
title_fullStr | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible Paul J. Nahin ; with a new preface by the author |
title_full_unstemmed | When least is best how mathematicians discovered many clever ways to make things as small (or as large) as possible Paul J. Nahin ; with a new preface by the author |
title_short | When least is best |
title_sort | when least is best how mathematicians discovered many clever ways to make things as small or as large as possible |
title_sub | how mathematicians discovered many clever ways to make things as small (or as large) as possible |
topic | Mathematics MATHEMATICS / Combinatorics bisacsh MATHEMATICS / History & Philosophy bisacsh Geschichte Mathematik Maxima and minima Mathematics History Calculus History Mathematical optimization Extremwert (DE-588)4137272-4 gnd |
topic_facet | Mathematics MATHEMATICS / Combinatorics MATHEMATICS / History & Philosophy Geschichte Mathematik Maxima and minima Mathematics History Calculus History Mathematical optimization Extremwert |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399090 |
work_keys_str_mv | AT nahinpaulj whenleastisbesthowmathematiciansdiscoveredmanycleverwaystomakethingsassmalloraslargeaspossible |