Computational methods in nonlinear analysis: efficient algorithms, fixed point theory and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
[2013]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xv, 575 pages) |
ISBN: | 9789814405836 9814405833 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043031172 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814405836 |c electronic bk. |9 978-981-4405-83-6 | ||
020 | |a 9814405833 |c electronic bk. |9 981-4405-83-3 | ||
035 | |a (OCoLC)855022917 | ||
035 | |a (DE-599)BVBBV043031172 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.355 |2 23 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Argyros, Ioannis K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational methods in nonlinear analysis |b efficient algorithms, fixed point theory and applications |c Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France) |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (xv, 575 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
505 | 8 | |a The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis | |
505 | 8 | |a 1. Newton's methods. 1.1. Convergence under Lipschitz conditions. 1.2. Convergence under generalized Lipschitz conditions. 1.3. Convergence without Lipschitz conditions. 1.4. Convex majorants. 1.5. Nondiscrete induction. 1.6. Exercises -- 2. Special conditions for Newton's method. 2.1. [symbol]-convergence. 2.2. Regular smoothness. 2.3. Smale's [symbol]-theory. 2.4. Exercises -- 3. Newton's method on special spaces. 3.1. Lie groups. 3.2. Hilbert space. 3.3. Convergence structure. 3.4. Riemannian manifolds. 3.5. Newton-type method on Riemannian manifolds. 3.6. Traub-type method on Riemannian manifolds. 3.7. Exercises -- 4. Secant method. 4.1. Semi-local convergence. 4.2. Secant-type method and nondiscrete induction. 4.3. Efficient Secant-type method. 4.4. Secant-like method and recurrent functions. 4.5. Directional Secant-type method. 4.6. A unified convergence analysis. 4.7. Exercises -- 5. Gauss-Newton method. 5.1. Regularized Gauss-Newton method. 5.2. Convex composite optimization. 5.3. Proximal Gauss-Newton method. 5.4. Inexact method and majorant conditions. 5.5. Exercises -- 6. Halley's method. 6.1. Semi-local convergence. 6.2. Local convergence. 6.3. Traub-type multipoint method. 6.4. Exercises -- 7. Chebyshev's method. 7.1. Directional methods. 7.2. Chebyshev-Secant methods. 7.3. Majorizing sequences for Chebyshev's method. 7.4. Exercises -- 8. Broyden's method. 8.1. Semi-local convergence. 8.2. Exercises -- 9. Newton-like methods. 9.1. Modified Newton method and multiple zeros. 9.2. Weak convergence conditions. 9.3. Local convergence for Newton-type method. 9.4. Two-step Newton-like method. 9.5. A unifying semi-local convergence. 9.6. High order Traub-type methods. 9.7. Relaxed Newton's method. 9.8. Exercises -- 10. Newton-Tikhonov method for ill-posed problems. 10.1. Newton-Tikhonov method in Hilbert space. 10.2. Two-step Newton-Tikhonov method in Hilbert space. 10.3. Regularization methods. 10.4. Exercises | |
650 | 7 | |a MATHEMATICS / Differential Equations / General |2 bisacsh | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Nonlinear theories |x Data processing | |
650 | 4 | |a Mathematics |x Data processing | |
650 | 0 | 7 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hilout, Saïd |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Argyros, Ioannis K |t . Computational methods in nonlinear analysis |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-981-4405-82-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 981-4405-82-5 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028455822 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175387492614144 |
---|---|
any_adam_object | |
author | Argyros, Ioannis K. |
author_facet | Argyros, Ioannis K. |
author_role | aut |
author_sort | Argyros, Ioannis K. |
author_variant | i k a ik ika |
building | Verbundindex |
bvnumber | BV043031172 |
classification_rvk | SK 920 SK 950 |
collection | ZDB-4-EBA |
contents | The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis 1. Newton's methods. 1.1. Convergence under Lipschitz conditions. 1.2. Convergence under generalized Lipschitz conditions. 1.3. Convergence without Lipschitz conditions. 1.4. Convex majorants. 1.5. Nondiscrete induction. 1.6. Exercises -- 2. Special conditions for Newton's method. 2.1. [symbol]-convergence. 2.2. Regular smoothness. 2.3. Smale's [symbol]-theory. 2.4. Exercises -- 3. Newton's method on special spaces. 3.1. Lie groups. 3.2. Hilbert space. 3.3. Convergence structure. 3.4. Riemannian manifolds. 3.5. Newton-type method on Riemannian manifolds. 3.6. Traub-type method on Riemannian manifolds. 3.7. Exercises -- 4. Secant method. 4.1. Semi-local convergence. 4.2. Secant-type method and nondiscrete induction. 4.3. Efficient Secant-type method. 4.4. Secant-like method and recurrent functions. 4.5. Directional Secant-type method. 4.6. A unified convergence analysis. 4.7. Exercises -- 5. Gauss-Newton method. 5.1. Regularized Gauss-Newton method. 5.2. Convex composite optimization. 5.3. Proximal Gauss-Newton method. 5.4. Inexact method and majorant conditions. 5.5. Exercises -- 6. Halley's method. 6.1. Semi-local convergence. 6.2. Local convergence. 6.3. Traub-type multipoint method. 6.4. Exercises -- 7. Chebyshev's method. 7.1. Directional methods. 7.2. Chebyshev-Secant methods. 7.3. Majorizing sequences for Chebyshev's method. 7.4. Exercises -- 8. Broyden's method. 8.1. Semi-local convergence. 8.2. Exercises -- 9. Newton-like methods. 9.1. Modified Newton method and multiple zeros. 9.2. Weak convergence conditions. 9.3. Local convergence for Newton-type method. 9.4. Two-step Newton-like method. 9.5. A unifying semi-local convergence. 9.6. High order Traub-type methods. 9.7. Relaxed Newton's method. 9.8. Exercises -- 10. Newton-Tikhonov method for ill-posed problems. 10.1. Newton-Tikhonov method in Hilbert space. 10.2. Two-step Newton-Tikhonov method in Hilbert space. 10.3. Regularization methods. 10.4. Exercises |
ctrlnum | (OCoLC)855022917 (DE-599)BVBBV043031172 |
dewey-full | 515/.355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.355 |
dewey-search | 515/.355 |
dewey-sort | 3515 3355 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05972nmm a2200601zc 4500</leader><controlfield tag="001">BV043031172</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814405836</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4405-83-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814405833</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4405-83-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855022917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043031172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.355</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Argyros, Ioannis K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods in nonlinear analysis</subfield><subfield code="b">efficient algorithms, fixed point theory and applications</subfield><subfield code="c">Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 575 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Newton's methods. 1.1. Convergence under Lipschitz conditions. 1.2. Convergence under generalized Lipschitz conditions. 1.3. Convergence without Lipschitz conditions. 1.4. Convex majorants. 1.5. Nondiscrete induction. 1.6. Exercises -- 2. Special conditions for Newton's method. 2.1. [symbol]-convergence. 2.2. Regular smoothness. 2.3. Smale's [symbol]-theory. 2.4. Exercises -- 3. Newton's method on special spaces. 3.1. Lie groups. 3.2. Hilbert space. 3.3. Convergence structure. 3.4. Riemannian manifolds. 3.5. Newton-type method on Riemannian manifolds. 3.6. Traub-type method on Riemannian manifolds. 3.7. Exercises -- 4. Secant method. 4.1. Semi-local convergence. 4.2. Secant-type method and nondiscrete induction. 4.3. Efficient Secant-type method. 4.4. Secant-like method and recurrent functions. 4.5. Directional Secant-type method. 4.6. A unified convergence analysis. 4.7. Exercises -- 5. Gauss-Newton method. 5.1. Regularized Gauss-Newton method. 5.2. Convex composite optimization. 5.3. Proximal Gauss-Newton method. 5.4. Inexact method and majorant conditions. 5.5. Exercises -- 6. Halley's method. 6.1. Semi-local convergence. 6.2. Local convergence. 6.3. Traub-type multipoint method. 6.4. Exercises -- 7. Chebyshev's method. 7.1. Directional methods. 7.2. Chebyshev-Secant methods. 7.3. Majorizing sequences for Chebyshev's method. 7.4. Exercises -- 8. Broyden's method. 8.1. Semi-local convergence. 8.2. Exercises -- 9. Newton-like methods. 9.1. Modified Newton method and multiple zeros. 9.2. Weak convergence conditions. 9.3. Local convergence for Newton-type method. 9.4. Two-step Newton-like method. 9.5. A unifying semi-local convergence. 9.6. High order Traub-type methods. 9.7. Relaxed Newton's method. 9.8. Exercises -- 10. Newton-Tikhonov method for ill-posed problems. 10.1. Newton-Tikhonov method in Hilbert space. 10.2. Two-step Newton-Tikhonov method in Hilbert space. 10.3. Regularization methods. 10.4. Exercises</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hilout, Saïd</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Argyros, Ioannis K</subfield><subfield code="t">. Computational methods in nonlinear analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-981-4405-82-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">981-4405-82-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028455822</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043031172 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:29Z |
institution | BVB |
isbn | 9789814405836 9814405833 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028455822 |
oclc_num | 855022917 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xv, 575 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
spelling | Argyros, Ioannis K. Verfasser aut Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France) [Hackensack] New Jersey World Scientific [2013] © 2013 1 online resource (xv, 575 pages) txt rdacontent c rdamedia cr rdacarrier Description based on print version record The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis 1. Newton's methods. 1.1. Convergence under Lipschitz conditions. 1.2. Convergence under generalized Lipschitz conditions. 1.3. Convergence without Lipschitz conditions. 1.4. Convex majorants. 1.5. Nondiscrete induction. 1.6. Exercises -- 2. Special conditions for Newton's method. 2.1. [symbol]-convergence. 2.2. Regular smoothness. 2.3. Smale's [symbol]-theory. 2.4. Exercises -- 3. Newton's method on special spaces. 3.1. Lie groups. 3.2. Hilbert space. 3.3. Convergence structure. 3.4. Riemannian manifolds. 3.5. Newton-type method on Riemannian manifolds. 3.6. Traub-type method on Riemannian manifolds. 3.7. Exercises -- 4. Secant method. 4.1. Semi-local convergence. 4.2. Secant-type method and nondiscrete induction. 4.3. Efficient Secant-type method. 4.4. Secant-like method and recurrent functions. 4.5. Directional Secant-type method. 4.6. A unified convergence analysis. 4.7. Exercises -- 5. Gauss-Newton method. 5.1. Regularized Gauss-Newton method. 5.2. Convex composite optimization. 5.3. Proximal Gauss-Newton method. 5.4. Inexact method and majorant conditions. 5.5. Exercises -- 6. Halley's method. 6.1. Semi-local convergence. 6.2. Local convergence. 6.3. Traub-type multipoint method. 6.4. Exercises -- 7. Chebyshev's method. 7.1. Directional methods. 7.2. Chebyshev-Secant methods. 7.3. Majorizing sequences for Chebyshev's method. 7.4. Exercises -- 8. Broyden's method. 8.1. Semi-local convergence. 8.2. Exercises -- 9. Newton-like methods. 9.1. Modified Newton method and multiple zeros. 9.2. Weak convergence conditions. 9.3. Local convergence for Newton-type method. 9.4. Two-step Newton-like method. 9.5. A unifying semi-local convergence. 9.6. High order Traub-type methods. 9.7. Relaxed Newton's method. 9.8. Exercises -- 10. Newton-Tikhonov method for ill-posed problems. 10.1. Newton-Tikhonov method in Hilbert space. 10.2. Two-step Newton-Tikhonov method in Hilbert space. 10.3. Regularization methods. 10.4. Exercises MATHEMATICS / Differential Equations / General bisacsh Datenverarbeitung Mathematik Nonlinear theories Data processing Mathematics Data processing Computerunterstütztes Verfahren (DE-588)4139030-1 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 s Numerisches Verfahren (DE-588)4128130-5 s Computerunterstütztes Verfahren (DE-588)4139030-1 s 1\p DE-604 Hilout, Saïd Sonstige oth Erscheint auch als Druck-Ausgabe Argyros, Ioannis K . Computational methods in nonlinear analysis Erscheint auch als Druckausgabe 978-981-4405-82-9 Erscheint auch als Druckausgabe 981-4405-82-5 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Argyros, Ioannis K. Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis 1. Newton's methods. 1.1. Convergence under Lipschitz conditions. 1.2. Convergence under generalized Lipschitz conditions. 1.3. Convergence without Lipschitz conditions. 1.4. Convex majorants. 1.5. Nondiscrete induction. 1.6. Exercises -- 2. Special conditions for Newton's method. 2.1. [symbol]-convergence. 2.2. Regular smoothness. 2.3. Smale's [symbol]-theory. 2.4. Exercises -- 3. Newton's method on special spaces. 3.1. Lie groups. 3.2. Hilbert space. 3.3. Convergence structure. 3.4. Riemannian manifolds. 3.5. Newton-type method on Riemannian manifolds. 3.6. Traub-type method on Riemannian manifolds. 3.7. Exercises -- 4. Secant method. 4.1. Semi-local convergence. 4.2. Secant-type method and nondiscrete induction. 4.3. Efficient Secant-type method. 4.4. Secant-like method and recurrent functions. 4.5. Directional Secant-type method. 4.6. A unified convergence analysis. 4.7. Exercises -- 5. Gauss-Newton method. 5.1. Regularized Gauss-Newton method. 5.2. Convex composite optimization. 5.3. Proximal Gauss-Newton method. 5.4. Inexact method and majorant conditions. 5.5. Exercises -- 6. Halley's method. 6.1. Semi-local convergence. 6.2. Local convergence. 6.3. Traub-type multipoint method. 6.4. Exercises -- 7. Chebyshev's method. 7.1. Directional methods. 7.2. Chebyshev-Secant methods. 7.3. Majorizing sequences for Chebyshev's method. 7.4. Exercises -- 8. Broyden's method. 8.1. Semi-local convergence. 8.2. Exercises -- 9. Newton-like methods. 9.1. Modified Newton method and multiple zeros. 9.2. Weak convergence conditions. 9.3. Local convergence for Newton-type method. 9.4. Two-step Newton-like method. 9.5. A unifying semi-local convergence. 9.6. High order Traub-type methods. 9.7. Relaxed Newton's method. 9.8. Exercises -- 10. Newton-Tikhonov method for ill-posed problems. 10.1. Newton-Tikhonov method in Hilbert space. 10.2. Two-step Newton-Tikhonov method in Hilbert space. 10.3. Regularization methods. 10.4. Exercises MATHEMATICS / Differential Equations / General bisacsh Datenverarbeitung Mathematik Nonlinear theories Data processing Mathematics Data processing Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
subject_GND | (DE-588)4139030-1 (DE-588)4128130-5 (DE-588)4205536-2 |
title | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications |
title_auth | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications |
title_exact_search | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications |
title_full | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France) |
title_fullStr | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France) |
title_full_unstemmed | Computational methods in nonlinear analysis efficient algorithms, fixed point theory and applications Ioannis K. Argyros (Cameron University, USA), Saïd Hilout (Poitiers University, France) |
title_short | Computational methods in nonlinear analysis |
title_sort | computational methods in nonlinear analysis efficient algorithms fixed point theory and applications |
title_sub | efficient algorithms, fixed point theory and applications |
topic | MATHEMATICS / Differential Equations / General bisacsh Datenverarbeitung Mathematik Nonlinear theories Data processing Mathematics Data processing Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
topic_facet | MATHEMATICS / Differential Equations / General Datenverarbeitung Mathematik Nonlinear theories Data processing Mathematics Data processing Computerunterstütztes Verfahren Numerisches Verfahren Nichtlineare Differentialgleichung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622027 |
work_keys_str_mv | AT argyrosioannisk computationalmethodsinnonlinearanalysisefficientalgorithmsfixedpointtheoryandapplications AT hiloutsaid computationalmethodsinnonlinearanalysisefficientalgorithmsfixedpointtheoryandapplications |