The mathematical theory of symmetry in solids: representation theory for point groups and space groups
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Clarendon Press
1972
|
Schriftenreihe: | Oxford classic texts in the physical sciences
|
Schlagworte: | |
Online-Zugang: | UBA01 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xii, 745 pages) illustrations |
ISBN: | 9780191576898 0191576891 9780199582587 0199582580 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043027181 | ||
003 | DE-604 | ||
005 | 20180409 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s1972 |||| o||u| ||||||eng d | ||
020 | |a 9780191576898 |c electronic bk. |9 978-0-19-157689-8 | ||
020 | |a 0191576891 |c electronic bk. |9 0-19-157689-1 | ||
020 | |a 9780199582587 |9 978-0-19-958258-7 | ||
020 | |a 0199582580 |9 0-19-958258-0 | ||
035 | |a (OCoLC)859155300 | ||
035 | |a (DE-599)BVBBV043027181 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-384 | ||
082 | 0 | |a 530.41015122 |2 22 | |
084 | |a UP 1200 |0 (DE-625)146345: |2 rvk | ||
084 | |a UQ 1350 |0 (DE-625)146479: |2 rvk | ||
100 | 1 | |a Bradley, Christopher J. |d 1938- |e Verfasser |0 (DE-588)142517836 |4 aut | |
245 | 1 | 0 | |a The mathematical theory of symmetry in solids |b representation theory for point groups and space groups |c by C.J. Bradley and A.P. Cracknell |
264 | 1 | |a Oxford |b Clarendon Press |c 1972 | |
300 | |a 1 online resource (xii, 745 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Oxford classic texts in the physical sciences | |
500 | |a Description based on print version record | ||
505 | 8 | |a 1 Symmetry and The Solid State ; 1.1 Introduction ; 1.2 Group theory ; 1.3 Group representations ; 1.4 Point groups ; 1.5 Space groups -- 2 Symmetry-Adapted Functions for the Point Groups ; 2.1 The matrix elements of the rotation group ; 2.2 The generation of symmetry-adapted functions ; 2.3 Application to the point groups ; 2.4 Symmetry-adapted functions for the crystallographic point groups ; 2.5 Active and passive operators ; 2.6 Symmetrized and anti-symmetrized products of point-group representations -- 3 Space Groups ; 3.1 Bravais lattices ; 3.2 Reciprocal lattices and Brillouin zones ; 3.3 The classification of points and lines of symmetry ; 3.4 The irreducible representations of the translation groups ; 3.5 The classification of the 230 3-dimensional space groups ; 3.6 The action of space-group operations on Bloch functions ; 3.7 A descriptive account of the representation theory of space groups ; 3.8 Examples: cubic close-packed and diamond structures -- 4 The Representations of A Group in Terms of The Representations of An Invariant Subgroup ; 4.1 Induced representations ; 4.2 Groups with an invariant subgroup ; 4.3 The theory of little groups ; 4.4 The small representations of little groups ; 4.5 The point groups as semi-direct products ; 4.6 The reality of representations induced from little groups ; 4.7 Direct products of induced representations ; 4.8 Symmetrized and anti-symmetrized squares of induced representations | |
505 | 8 | |a "This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups."--pub. desc | |
650 | 7 | |a Symmetrie / Festkörper |2 idsbb | |
650 | 7 | |a Festkörper / Symmetrie |2 idsbb | |
650 | 7 | |a Symmetriegruppe / Kristallstruktur |2 idsbb | |
650 | 7 | |a Kristallstruktur / Symmetriegruppe |2 idsbb | |
650 | 7 | |a Representations of groups |2 fast | |
650 | 7 | |a Solid state physics |2 fast | |
650 | 7 | |a Symmetry (Physics) |2 fast | |
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 4 | |a Solid state physics | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Symmetry (Physics) | |
650 | 0 | 7 | |a Kristallsymmetrie |0 (DE-588)4136175-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kristallstruktur |0 (DE-588)4136176-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 0 | 1 | |a Kristallstruktur |0 (DE-588)4136176-3 |D s |
689 | 0 | 2 | |a Kristallsymmetrie |0 (DE-588)4136175-1 |D s |
689 | 0 | 3 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 4 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 1 | 1 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Cracknell, Arthur P. |d 1940- |e Verfasser |0 (DE-588)136048153 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Bradley, C |t J. (Christopher John). Mathematical theory of symmetry in solids |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=643652 |x Aggregator |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-4-EBA | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028451835 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://ebookcentral.proquest.com/lib/augsburg/detail.action?docID=3055656 |l UBA01 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175381090009088 |
---|---|
any_adam_object | |
author | Bradley, Christopher J. 1938- Cracknell, Arthur P. 1940- |
author_GND | (DE-588)142517836 (DE-588)136048153 |
author_facet | Bradley, Christopher J. 1938- Cracknell, Arthur P. 1940- |
author_role | aut aut |
author_sort | Bradley, Christopher J. 1938- |
author_variant | c j b cj cjb a p c ap apc |
building | Verbundindex |
bvnumber | BV043027181 |
classification_rvk | UP 1200 UQ 1350 |
collection | ZDB-30-PQE ZDB-4-EBA |
contents | 1 Symmetry and The Solid State ; 1.1 Introduction ; 1.2 Group theory ; 1.3 Group representations ; 1.4 Point groups ; 1.5 Space groups -- 2 Symmetry-Adapted Functions for the Point Groups ; 2.1 The matrix elements of the rotation group ; 2.2 The generation of symmetry-adapted functions ; 2.3 Application to the point groups ; 2.4 Symmetry-adapted functions for the crystallographic point groups ; 2.5 Active and passive operators ; 2.6 Symmetrized and anti-symmetrized products of point-group representations -- 3 Space Groups ; 3.1 Bravais lattices ; 3.2 Reciprocal lattices and Brillouin zones ; 3.3 The classification of points and lines of symmetry ; 3.4 The irreducible representations of the translation groups ; 3.5 The classification of the 230 3-dimensional space groups ; 3.6 The action of space-group operations on Bloch functions ; 3.7 A descriptive account of the representation theory of space groups ; 3.8 Examples: cubic close-packed and diamond structures -- 4 The Representations of A Group in Terms of The Representations of An Invariant Subgroup ; 4.1 Induced representations ; 4.2 Groups with an invariant subgroup ; 4.3 The theory of little groups ; 4.4 The small representations of little groups ; 4.5 The point groups as semi-direct products ; 4.6 The reality of representations induced from little groups ; 4.7 Direct products of induced representations ; 4.8 Symmetrized and anti-symmetrized squares of induced representations "This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups."--pub. desc |
ctrlnum | (OCoLC)859155300 (DE-599)BVBBV043027181 |
dewey-full | 530.41015122 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.41015122 |
dewey-search | 530.41015122 |
dewey-sort | 3530.41015122 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06050nmm a2200817zc 4500</leader><controlfield tag="001">BV043027181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180409 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191576898</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-19-157689-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191576891</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-19-157689-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199582587</subfield><subfield code="9">978-0-19-958258-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199582580</subfield><subfield code="9">0-19-958258-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859155300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043027181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.41015122</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1200</subfield><subfield code="0">(DE-625)146345:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1350</subfield><subfield code="0">(DE-625)146479:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bradley, Christopher J.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142517836</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematical theory of symmetry in solids</subfield><subfield code="b">representation theory for point groups and space groups</subfield><subfield code="c">by C.J. Bradley and A.P. Cracknell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 745 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford classic texts in the physical sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 Symmetry and The Solid State ; 1.1 Introduction ; 1.2 Group theory ; 1.3 Group representations ; 1.4 Point groups ; 1.5 Space groups -- 2 Symmetry-Adapted Functions for the Point Groups ; 2.1 The matrix elements of the rotation group ; 2.2 The generation of symmetry-adapted functions ; 2.3 Application to the point groups ; 2.4 Symmetry-adapted functions for the crystallographic point groups ; 2.5 Active and passive operators ; 2.6 Symmetrized and anti-symmetrized products of point-group representations -- 3 Space Groups ; 3.1 Bravais lattices ; 3.2 Reciprocal lattices and Brillouin zones ; 3.3 The classification of points and lines of symmetry ; 3.4 The irreducible representations of the translation groups ; 3.5 The classification of the 230 3-dimensional space groups ; 3.6 The action of space-group operations on Bloch functions ; 3.7 A descriptive account of the representation theory of space groups ; 3.8 Examples: cubic close-packed and diamond structures -- 4 The Representations of A Group in Terms of The Representations of An Invariant Subgroup ; 4.1 Induced representations ; 4.2 Groups with an invariant subgroup ; 4.3 The theory of little groups ; 4.4 The small representations of little groups ; 4.5 The point groups as semi-direct products ; 4.6 The reality of representations induced from little groups ; 4.7 Direct products of induced representations ; 4.8 Symmetrized and anti-symmetrized squares of induced representations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups."--pub. desc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetrie / Festkörper</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Festkörper / Symmetrie</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetriegruppe / Kristallstruktur</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kristallstruktur / Symmetriegruppe</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solid state physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid state physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallsymmetrie</subfield><subfield code="0">(DE-588)4136175-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallstruktur</subfield><subfield code="0">(DE-588)4136176-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kristallstruktur</subfield><subfield code="0">(DE-588)4136176-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kristallsymmetrie</subfield><subfield code="0">(DE-588)4136175-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cracknell, Arthur P.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136048153</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Bradley, C</subfield><subfield code="t">J. (Christopher John). Mathematical theory of symmetry in solids</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=643652</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028451835</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/augsburg/detail.action?docID=3055656</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043027181 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:23Z |
institution | BVB |
isbn | 9780191576898 0191576891 9780199582587 0199582580 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028451835 |
oclc_num | 859155300 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-384 |
owner_facet | DE-1046 DE-1047 DE-384 |
physical | 1 online resource (xii, 745 pages) illustrations |
psigel | ZDB-30-PQE ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Clarendon Press |
record_format | marc |
series2 | Oxford classic texts in the physical sciences |
spelling | Bradley, Christopher J. 1938- Verfasser (DE-588)142517836 aut The mathematical theory of symmetry in solids representation theory for point groups and space groups by C.J. Bradley and A.P. Cracknell Oxford Clarendon Press 1972 1 online resource (xii, 745 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Oxford classic texts in the physical sciences Description based on print version record 1 Symmetry and The Solid State ; 1.1 Introduction ; 1.2 Group theory ; 1.3 Group representations ; 1.4 Point groups ; 1.5 Space groups -- 2 Symmetry-Adapted Functions for the Point Groups ; 2.1 The matrix elements of the rotation group ; 2.2 The generation of symmetry-adapted functions ; 2.3 Application to the point groups ; 2.4 Symmetry-adapted functions for the crystallographic point groups ; 2.5 Active and passive operators ; 2.6 Symmetrized and anti-symmetrized products of point-group representations -- 3 Space Groups ; 3.1 Bravais lattices ; 3.2 Reciprocal lattices and Brillouin zones ; 3.3 The classification of points and lines of symmetry ; 3.4 The irreducible representations of the translation groups ; 3.5 The classification of the 230 3-dimensional space groups ; 3.6 The action of space-group operations on Bloch functions ; 3.7 A descriptive account of the representation theory of space groups ; 3.8 Examples: cubic close-packed and diamond structures -- 4 The Representations of A Group in Terms of The Representations of An Invariant Subgroup ; 4.1 Induced representations ; 4.2 Groups with an invariant subgroup ; 4.3 The theory of little groups ; 4.4 The small representations of little groups ; 4.5 The point groups as semi-direct products ; 4.6 The reality of representations induced from little groups ; 4.7 Direct products of induced representations ; 4.8 Symmetrized and anti-symmetrized squares of induced representations "This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups."--pub. desc Symmetrie / Festkörper idsbb Festkörper / Symmetrie idsbb Symmetriegruppe / Kristallstruktur idsbb Kristallstruktur / Symmetriegruppe idsbb Representations of groups fast Solid state physics fast Symmetry (Physics) fast SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Solid state physics Representations of groups Symmetry (Physics) Kristallsymmetrie (DE-588)4136175-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Kristallstruktur (DE-588)4136176-3 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 s Kristallstruktur (DE-588)4136176-3 s Kristallsymmetrie (DE-588)4136175-1 s Gruppentheorie (DE-588)4072157-7 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Festkörper (DE-588)4016918-2 s Symmetrie (DE-588)4058724-1 s 2\p DE-604 Cracknell, Arthur P. 1940- Verfasser (DE-588)136048153 aut Erscheint auch als Druck-Ausgabe Bradley, C J. (Christopher John). Mathematical theory of symmetry in solids http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=643652 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bradley, Christopher J. 1938- Cracknell, Arthur P. 1940- The mathematical theory of symmetry in solids representation theory for point groups and space groups 1 Symmetry and The Solid State ; 1.1 Introduction ; 1.2 Group theory ; 1.3 Group representations ; 1.4 Point groups ; 1.5 Space groups -- 2 Symmetry-Adapted Functions for the Point Groups ; 2.1 The matrix elements of the rotation group ; 2.2 The generation of symmetry-adapted functions ; 2.3 Application to the point groups ; 2.4 Symmetry-adapted functions for the crystallographic point groups ; 2.5 Active and passive operators ; 2.6 Symmetrized and anti-symmetrized products of point-group representations -- 3 Space Groups ; 3.1 Bravais lattices ; 3.2 Reciprocal lattices and Brillouin zones ; 3.3 The classification of points and lines of symmetry ; 3.4 The irreducible representations of the translation groups ; 3.5 The classification of the 230 3-dimensional space groups ; 3.6 The action of space-group operations on Bloch functions ; 3.7 A descriptive account of the representation theory of space groups ; 3.8 Examples: cubic close-packed and diamond structures -- 4 The Representations of A Group in Terms of The Representations of An Invariant Subgroup ; 4.1 Induced representations ; 4.2 Groups with an invariant subgroup ; 4.3 The theory of little groups ; 4.4 The small representations of little groups ; 4.5 The point groups as semi-direct products ; 4.6 The reality of representations induced from little groups ; 4.7 Direct products of induced representations ; 4.8 Symmetrized and anti-symmetrized squares of induced representations "This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups."--pub. desc Symmetrie / Festkörper idsbb Festkörper / Symmetrie idsbb Symmetriegruppe / Kristallstruktur idsbb Kristallstruktur / Symmetriegruppe idsbb Representations of groups fast Solid state physics fast Symmetry (Physics) fast SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Solid state physics Representations of groups Symmetry (Physics) Kristallsymmetrie (DE-588)4136175-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Kristallstruktur (DE-588)4136176-3 gnd Festkörper (DE-588)4016918-2 gnd Symmetrie (DE-588)4058724-1 gnd Festkörperphysik (DE-588)4016921-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4136175-1 (DE-588)4037952-8 (DE-588)4136176-3 (DE-588)4016918-2 (DE-588)4058724-1 (DE-588)4016921-2 (DE-588)4072157-7 |
title | The mathematical theory of symmetry in solids representation theory for point groups and space groups |
title_auth | The mathematical theory of symmetry in solids representation theory for point groups and space groups |
title_exact_search | The mathematical theory of symmetry in solids representation theory for point groups and space groups |
title_full | The mathematical theory of symmetry in solids representation theory for point groups and space groups by C.J. Bradley and A.P. Cracknell |
title_fullStr | The mathematical theory of symmetry in solids representation theory for point groups and space groups by C.J. Bradley and A.P. Cracknell |
title_full_unstemmed | The mathematical theory of symmetry in solids representation theory for point groups and space groups by C.J. Bradley and A.P. Cracknell |
title_short | The mathematical theory of symmetry in solids |
title_sort | the mathematical theory of symmetry in solids representation theory for point groups and space groups |
title_sub | representation theory for point groups and space groups |
topic | Symmetrie / Festkörper idsbb Festkörper / Symmetrie idsbb Symmetriegruppe / Kristallstruktur idsbb Kristallstruktur / Symmetriegruppe idsbb Representations of groups fast Solid state physics fast Symmetry (Physics) fast SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Solid state physics Representations of groups Symmetry (Physics) Kristallsymmetrie (DE-588)4136175-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Kristallstruktur (DE-588)4136176-3 gnd Festkörper (DE-588)4016918-2 gnd Symmetrie (DE-588)4058724-1 gnd Festkörperphysik (DE-588)4016921-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Symmetrie / Festkörper Festkörper / Symmetrie Symmetriegruppe / Kristallstruktur Kristallstruktur / Symmetriegruppe Representations of groups Solid state physics Symmetry (Physics) SCIENCE / Energy SCIENCE / Mechanics / General SCIENCE / Physics / General Kristallsymmetrie Mathematische Physik Kristallstruktur Festkörper Symmetrie Festkörperphysik Gruppentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=643652 |
work_keys_str_mv | AT bradleychristopherj themathematicaltheoryofsymmetryinsolidsrepresentationtheoryforpointgroupsandspacegroups AT cracknellarthurp themathematicaltheoryofsymmetryinsolidsrepresentationtheoryforpointgroupsandspacegroups |