Operator Theory: Nonclassical Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston
De Gruyter
[2002]
|
Schriftenreihe: | Inverse and Ill-Posed Problems Series
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Description based on online resource; title from PDF title page (publisher’s Web site, viewed March 24, 2015) |
Beschreibung: | 1 online resource (ix,346pages) illustrations |
ISBN: | 9783110900163 9789067643634 9783111826127 |
DOI: | 10.1515/9783110900163 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043016693 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151118s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783110900163 |9 978-3-11-090016-3 | ||
020 | |a 9789067643634 |c Print |9 978-90-6764-363-4 | ||
020 | |a 9783111826127 |c Print+Online |9 978-3-11-182612-7 | ||
024 | 7 | |a 10.1515/9783110900163 |2 doi | |
035 | |a (OCoLC)1198887355 | ||
035 | |a (DE-599)BVBBV043016693 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 515/.724 |2 23 | |
100 | 1 | |a Pyatkov, Sergei G. |4 aut | |
245 | 1 | 0 | |a Operator Theory |b Nonclassical Problems |c Sergei G. Pyatkov |
264 | 1 | |a Berlin/Boston |b De Gruyter |c [2002] | |
264 | 4 | |c © 2002 | |
300 | |a 1 online resource (ix,346pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Inverse and Ill-Posed Problems Series |v 33 | |
500 | |a Description based on online resource; title from PDF title page (publisher’s Web site, viewed March 24, 2015) | ||
505 | 8 | |a This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations | |
546 | |a In English | ||
650 | 4 | |a Banach spaces | |
650 | 4 | |a Interpolation spaces | |
650 | 4 | |a Nonclassical mathematical logic | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | 2 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110900163 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028441570 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175365909774336 |
---|---|
any_adam_object | |
author | Pyatkov, Sergei G. |
author_facet | Pyatkov, Sergei G. |
author_role | aut |
author_sort | Pyatkov, Sergei G. |
author_variant | s g p sg sgp |
building | Verbundindex |
bvnumber | BV043016693 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
contents | This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations |
ctrlnum | (OCoLC)1198887355 (DE-599)BVBBV043016693 |
dewey-full | 515/.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.724 |
dewey-search | 515/.724 |
dewey-sort | 3515 3724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110900163 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02873nmm a2200637zcb4500</leader><controlfield tag="001">BV043016693</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151118s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110900163</subfield><subfield code="9">978-3-11-090016-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789067643634</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-6764-363-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111826127</subfield><subfield code="c">Print+Online</subfield><subfield code="9">978-3-11-182612-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110900163</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198887355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043016693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pyatkov, Sergei G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operator Theory</subfield><subfield code="b">Nonclassical Problems</subfield><subfield code="c">Sergei G. Pyatkov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin/Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2002]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix,346pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Inverse and Ill-Posed Problems Series</subfield><subfield code="v">33</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher’s Web site, viewed March 24, 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonclassical mathematical logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110900163</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028441570</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043016693 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:08Z |
institution | BVB |
isbn | 9783110900163 9789067643634 9783111826127 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028441570 |
oclc_num | 1198887355 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 online resource (ix,346pages) illustrations |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | De Gruyter |
record_format | marc |
series2 | Inverse and Ill-Posed Problems Series |
spelling | Pyatkov, Sergei G. aut Operator Theory Nonclassical Problems Sergei G. Pyatkov Berlin/Boston De Gruyter [2002] © 2002 1 online resource (ix,346pages) illustrations txt rdacontent c rdamedia cr rdacarrier Inverse and Ill-Posed Problems Series 33 Description based on online resource; title from PDF title page (publisher’s Web site, viewed March 24, 2015) This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations In English Banach spaces Interpolation spaces Nonclassical mathematical logic Operator theory Mathematik Banach-Raum (DE-588)4004402-6 gnd rswk-swf Linearer Operator (DE-588)4167721-3 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Linearer Operator (DE-588)4167721-3 s Interpolation (DE-588)4162121-9 s 1\p DE-604 https://doi.org/10.1515/9783110900163 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pyatkov, Sergei G. Operator Theory Nonclassical Problems This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations Banach spaces Interpolation spaces Nonclassical mathematical logic Operator theory Mathematik Banach-Raum (DE-588)4004402-6 gnd Linearer Operator (DE-588)4167721-3 gnd Interpolation (DE-588)4162121-9 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4167721-3 (DE-588)4162121-9 |
title | Operator Theory Nonclassical Problems |
title_auth | Operator Theory Nonclassical Problems |
title_exact_search | Operator Theory Nonclassical Problems |
title_full | Operator Theory Nonclassical Problems Sergei G. Pyatkov |
title_fullStr | Operator Theory Nonclassical Problems Sergei G. Pyatkov |
title_full_unstemmed | Operator Theory Nonclassical Problems Sergei G. Pyatkov |
title_short | Operator Theory |
title_sort | operator theory nonclassical problems |
title_sub | Nonclassical Problems |
topic | Banach spaces Interpolation spaces Nonclassical mathematical logic Operator theory Mathematik Banach-Raum (DE-588)4004402-6 gnd Linearer Operator (DE-588)4167721-3 gnd Interpolation (DE-588)4162121-9 gnd |
topic_facet | Banach spaces Interpolation spaces Nonclassical mathematical logic Operator theory Mathematik Banach-Raum Linearer Operator Interpolation |
url | https://doi.org/10.1515/9783110900163 |
work_keys_str_mv | AT pyatkovsergeig operatortheorynonclassicalproblems |