Global Variational Analysis: Weierstrass Integrals on a Riemannian Manifold. (MN-16)
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2015]
|
Schriftenreihe: | Mathematical Notes
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) |
Beschreibung: | 1 online resource (270pages) illustrations |
ISBN: | 9781400870431 |
DOI: | 10.1515/9781400870431 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043016356 | ||
003 | DE-604 | ||
005 | 20180530 | ||
007 | cr|uuu---uuuuu | ||
008 | 151118s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781400870431 |9 978-1-4008-7043-1 | ||
024 | 7 | |a 10.1515/9781400870431 |2 doi | |
035 | |a (OCoLC)1165447825 | ||
035 | |a (DE-599)BVBBV043016356 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.64 |2 23 | |
100 | 1 | |a Morse, Marston |d 1892-1977 |0 (DE-588)120178451 |4 aut | |
245 | 1 | 0 | |a Global Variational Analysis |b Weierstrass Integrals on a Riemannian Manifold. (MN-16) |c Marston Morse |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource (270pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Notes | |
500 | |a Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) | ||
505 | 8 | |a This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 | |
546 | |a In English | ||
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Differentiable manifolds | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Mathematik | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 0 | 7 | |a Weierstraß-Integral |0 (DE-588)4338428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Weierstraß-Integral |0 (DE-588)4338428-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400870431 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028441233 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175365228199936 |
---|---|
any_adam_object | |
author | Morse, Marston 1892-1977 |
author_GND | (DE-588)120178451 |
author_facet | Morse, Marston 1892-1977 |
author_role | aut |
author_sort | Morse, Marston 1892-1977 |
author_variant | m m mm |
building | Verbundindex |
bvnumber | BV043016356 |
collection | ZDB-23-DGG |
contents | This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 |
ctrlnum | (OCoLC)1165447825 (DE-599)BVBBV043016356 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400870431 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03196nmm a2200553zc 4500</leader><controlfield tag="001">BV043016356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180530 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151118s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400870431</subfield><subfield code="9">978-1-4008-7043-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400870431</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165447825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043016356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morse, Marston</subfield><subfield code="d">1892-1977</subfield><subfield code="0">(DE-588)120178451</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Variational Analysis</subfield><subfield code="b">Weierstrass Integrals on a Riemannian Manifold. (MN-16)</subfield><subfield code="c">Marston Morse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (270pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Notes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weierstraß-Integral</subfield><subfield code="0">(DE-588)4338428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Weierstraß-Integral</subfield><subfield code="0">(DE-588)4338428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400870431</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028441233</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043016356 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:08Z |
institution | BVB |
isbn | 9781400870431 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028441233 |
oclc_num | 1165447825 |
open_access_boolean | |
physical | 1 online resource (270pages) illustrations |
psigel | ZDB-23-DGG |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical Notes |
spelling | Morse, Marston 1892-1977 (DE-588)120178451 aut Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) Marston Morse Princeton, N.J. Princeton University Press [2015] © 2015 1 online resource (270pages) illustrations txt rdacontent c rdamedia cr rdacarrier Mathematical Notes Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 In English Calculus of variations Differentiable manifolds Global analysis (Mathematics) Mathematik MATHEMATICS / Calculus bisacsh Weierstraß-Integral (DE-588)4338428-6 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 s 1\p DE-604 Variationsrechnung (DE-588)4062355-5 s 2\p DE-604 Weierstraß-Integral (DE-588)4338428-6 s 3\p DE-604 https://doi.org/10.1515/9781400870431 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Morse, Marston 1892-1977 Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1?A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ? A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 Calculus of variations Differentiable manifolds Global analysis (Mathematics) Mathematik MATHEMATICS / Calculus bisacsh Weierstraß-Integral (DE-588)4338428-6 gnd Variationsrechnung (DE-588)4062355-5 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4338428-6 (DE-588)4062355-5 (DE-588)4128295-4 |
title | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) |
title_auth | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) |
title_exact_search | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) |
title_full | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) Marston Morse |
title_fullStr | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) Marston Morse |
title_full_unstemmed | Global Variational Analysis Weierstrass Integrals on a Riemannian Manifold. (MN-16) Marston Morse |
title_short | Global Variational Analysis |
title_sort | global variational analysis weierstrass integrals on a riemannian manifold mn 16 |
title_sub | Weierstrass Integrals on a Riemannian Manifold. (MN-16) |
topic | Calculus of variations Differentiable manifolds Global analysis (Mathematics) Mathematik MATHEMATICS / Calculus bisacsh Weierstraß-Integral (DE-588)4338428-6 gnd Variationsrechnung (DE-588)4062355-5 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Calculus of variations Differentiable manifolds Global analysis (Mathematics) Mathematik MATHEMATICS / Calculus Weierstraß-Integral Variationsrechnung Riemannscher Raum |
url | https://doi.org/10.1515/9781400870431 |
work_keys_str_mv | AT morsemarston globalvariationalanalysisweierstrassintegralsonariemannianmanifoldmn16 |