Lectures on Complex Analytic Varieties: Finite Analytic Mappings. (MN-14)
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2015]
|
Schriftenreihe: | Mathematical Notes
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) |
Beschreibung: | 1 online resource (165pages) illustrations |
ISBN: | 9781400869299 |
DOI: | 10.1515/9781400869299 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043016354 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151118s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781400869299 |9 978-1-4008-6929-9 | ||
024 | 7 | |a 10.1515/9781400869299 |2 doi | |
035 | |a (OCoLC)1165550608 | ||
035 | |a (DE-599)BVBBV043016354 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.9 |2 23 | |
100 | 1 | |a Gunning, Robert C. |4 aut | |
245 | 1 | 0 | |a Lectures on Complex Analytic Varieties |b Finite Analytic Mappings. (MN-14) |c Robert C. Gunning |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource (165pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Notes |v 14 | |
500 | |a Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) | ||
505 | 8 | |a This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 | |
546 | |a In English | ||
650 | 4 | |a Analytic mappings | |
650 | 4 | |a Analytic spaces | |
650 | 4 | |a Mathematik | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 0 | 7 | |a Analytische Abbildung |0 (DE-588)4207851-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Mannigfaltigkeit |0 (DE-588)4135584-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Mannigfaltigkeit |0 (DE-588)4142350-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Abbildung |0 (DE-588)4207851-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Holomorphe Mannigfaltigkeit |0 (DE-588)4135584-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Analytische Mannigfaltigkeit |0 (DE-588)4142350-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400869299 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028441231 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175365235539968 |
---|---|
any_adam_object | |
author | Gunning, Robert C. |
author_facet | Gunning, Robert C. |
author_role | aut |
author_sort | Gunning, Robert C. |
author_variant | r c g rc rcg |
building | Verbundindex |
bvnumber | BV043016354 |
collection | ZDB-23-DGG |
contents | This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 |
ctrlnum | (OCoLC)1165550608 (DE-599)BVBBV043016354 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400869299 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03196nmm a2200541zcb4500</leader><controlfield tag="001">BV043016354</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151118s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400869299</subfield><subfield code="9">978-1-4008-6929-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400869299</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165550608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043016354</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gunning, Robert C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Complex Analytic Varieties</subfield><subfield code="b">Finite Analytic Mappings. (MN-14)</subfield><subfield code="c">Robert C. Gunning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (165pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Notes</subfield><subfield code="v">14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Abbildung</subfield><subfield code="0">(DE-588)4207851-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4135584-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4142350-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Abbildung</subfield><subfield code="0">(DE-588)4207851-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4135584-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analytische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4142350-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400869299</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028441231</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043016354 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:08Z |
institution | BVB |
isbn | 9781400869299 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028441231 |
oclc_num | 1165550608 |
open_access_boolean | |
physical | 1 online resource (165pages) illustrations |
psigel | ZDB-23-DGG |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical Notes |
spelling | Gunning, Robert C. aut Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) Robert C. Gunning Princeton, N.J. Princeton University Press [2015] © 2015 1 online resource (165pages) illustrations txt rdacontent c rdamedia cr rdacarrier Mathematical Notes 14 Description based on online resource; title from PDF title page (publisher’s Web site, viewed June 24 2015) This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 In English Analytic mappings Analytic spaces Mathematik MATHEMATICS / Calculus bisacsh Analytische Abbildung (DE-588)4207851-9 gnd rswk-swf Holomorphe Mannigfaltigkeit (DE-588)4135584-2 gnd rswk-swf Analytische Mannigfaltigkeit (DE-588)4142350-1 gnd rswk-swf Analytische Abbildung (DE-588)4207851-9 s 1\p DE-604 Holomorphe Mannigfaltigkeit (DE-588)4135584-2 s 2\p DE-604 Analytische Mannigfaltigkeit (DE-588)4142350-1 s 3\p DE-604 https://doi.org/10.1515/9781400869299 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gunning, Robert C. Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905 Analytic mappings Analytic spaces Mathematik MATHEMATICS / Calculus bisacsh Analytische Abbildung (DE-588)4207851-9 gnd Holomorphe Mannigfaltigkeit (DE-588)4135584-2 gnd Analytische Mannigfaltigkeit (DE-588)4142350-1 gnd |
subject_GND | (DE-588)4207851-9 (DE-588)4135584-2 (DE-588)4142350-1 |
title | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) |
title_auth | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) |
title_exact_search | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) |
title_full | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) Robert C. Gunning |
title_fullStr | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) Robert C. Gunning |
title_full_unstemmed | Lectures on Complex Analytic Varieties Finite Analytic Mappings. (MN-14) Robert C. Gunning |
title_short | Lectures on Complex Analytic Varieties |
title_sort | lectures on complex analytic varieties finite analytic mappings mn 14 |
title_sub | Finite Analytic Mappings. (MN-14) |
topic | Analytic mappings Analytic spaces Mathematik MATHEMATICS / Calculus bisacsh Analytische Abbildung (DE-588)4207851-9 gnd Holomorphe Mannigfaltigkeit (DE-588)4135584-2 gnd Analytische Mannigfaltigkeit (DE-588)4142350-1 gnd |
topic_facet | Analytic mappings Analytic spaces Mathematik MATHEMATICS / Calculus Analytische Abbildung Holomorphe Mannigfaltigkeit Analytische Mannigfaltigkeit |
url | https://doi.org/10.1515/9781400869299 |
work_keys_str_mv | AT gunningrobertc lecturesoncomplexanalyticvarietiesfiniteanalyticmappingsmn14 |