Non-abelian minimal closed ideals of transitive Lie algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©1981
|
Schriftenreihe: | Mathematical Notes
Mathematical notes 25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | De Gruyter ; De Gruyter ; De Gruyter Includes bibliographical references |
Beschreibung: | 1 Online-Ressource |
ISBN: | 1306988985 9781400853656 |
DOI: | 10.1515/9781400853656 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043014158 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151118s1981 |||| o||u| ||||||eng d | ||
020 | |a 1306988985 |9 1-306-98898-5 | ||
020 | |a 9781400853656 |9 978-1-4008-5365-6 | ||
024 | 7 | |a 10.1515/9781400853656 |2 doi | |
035 | |a (OCoLC)885020232 | ||
035 | |a (DE-599)BVBBV043014158 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 512/.55 |2 23 | |
100 | 1 | |a Conn, Jack F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-abelian minimal closed ideals of transitive Lie algebras |c by Jack F. Conn |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©1981 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Notes | |
490 | 0 | |a Mathematical notes |v 25 | |
500 | |a De Gruyter ; De Gruyter ; De Gruyter | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Religion, Jewish Studies, Theology | |
650 | 4 | |a Religion | |
650 | 7 | |a Ideals (Algebra) |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a Pseudogroups |2 fast | |
650 | 4 | |a Ideals (Algebra) | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Pseudogroups | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400853656 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028439040 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175360831520768 |
---|---|
any_adam_object | |
author | Conn, Jack F. |
author_facet | Conn, Jack F. |
author_role | aut |
author_sort | Conn, Jack F. |
author_variant | j f c jf jfc |
building | Verbundindex |
bvnumber | BV043014158 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)885020232 (DE-599)BVBBV043014158 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400853656 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01875nmm a2200541zcb4500</leader><controlfield tag="001">BV043014158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151118s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306988985</subfield><subfield code="9">1-306-98898-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400853656</subfield><subfield code="9">978-1-4008-5365-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400853656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885020232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043014158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian minimal closed ideals of transitive Lie algebras</subfield><subfield code="c">by Jack F. Conn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Notes</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical notes</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">De Gruyter ; De Gruyter ; De Gruyter</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Religion, Jewish Studies, Theology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Religion</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ideals (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudogroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudogroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400853656</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028439040</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043014158 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:03Z |
institution | BVB |
isbn | 1306988985 9781400853656 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028439040 |
oclc_num | 885020232 |
open_access_boolean | |
physical | 1 Online-Ressource |
psigel | ZDB-23-DGG |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical Notes Mathematical notes |
spelling | Conn, Jack F. Verfasser aut Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn Princeton, N.J. Princeton University Press ©1981 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Mathematical Notes Mathematical notes 25 De Gruyter ; De Gruyter ; De Gruyter Includes bibliographical references Religion, Jewish Studies, Theology Religion Ideals (Algebra) fast Lie algebras fast MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Linear bisacsh Pseudogroups fast Ideals (Algebra) Lie algebras Pseudogroups Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Ideal Mathematik (DE-588)4161198-6 s 1\p DE-604 https://doi.org/10.1515/9781400853656 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Conn, Jack F. Non-abelian minimal closed ideals of transitive Lie algebras Religion, Jewish Studies, Theology Religion Ideals (Algebra) fast Lie algebras fast MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Linear bisacsh Pseudogroups fast Ideals (Algebra) Lie algebras Pseudogroups Lie-Algebra (DE-588)4130355-6 gnd Ideal Mathematik (DE-588)4161198-6 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4161198-6 |
title | Non-abelian minimal closed ideals of transitive Lie algebras |
title_auth | Non-abelian minimal closed ideals of transitive Lie algebras |
title_exact_search | Non-abelian minimal closed ideals of transitive Lie algebras |
title_full | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_fullStr | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_full_unstemmed | Non-abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_short | Non-abelian minimal closed ideals of transitive Lie algebras |
title_sort | non abelian minimal closed ideals of transitive lie algebras |
topic | Religion, Jewish Studies, Theology Religion Ideals (Algebra) fast Lie algebras fast MATHEMATICS / Algebra / Intermediate bisacsh MATHEMATICS / Algebra / Linear bisacsh Pseudogroups fast Ideals (Algebra) Lie algebras Pseudogroups Lie-Algebra (DE-588)4130355-6 gnd Ideal Mathematik (DE-588)4161198-6 gnd |
topic_facet | Religion, Jewish Studies, Theology Religion Ideals (Algebra) Lie algebras MATHEMATICS / Algebra / Intermediate MATHEMATICS / Algebra / Linear Pseudogroups Lie-Algebra Ideal Mathematik |
url | https://doi.org/10.1515/9781400853656 |
work_keys_str_mv | AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras |