Advances in learning theory: methods, models, and applications
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
IOS Press
c2003
|
Schriftenreihe: | NATO science series
v. 190 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice, 8-19 July 2002, Leuven, Belgium"--T.p. verso. - "Published in cooperation with NATO Scientific Affairs Division.". - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references and indexes Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics |
Beschreibung: | 1 Online-Ressource (xxi, 415 p.) |
ISBN: | 1586033417 9781586033415 427490587X 9784274905872 1417511397 9781417511396 1601294018 9781601294012 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042968845 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151030s2003 |||| o||u| ||||||eng d | ||
020 | |a 1586033417 |9 1-58603-341-7 | ||
020 | |a 9781586033415 |9 978-1-58603-341-5 | ||
020 | |a 427490587X |c Ohmsha |9 4-274-90587-X | ||
020 | |a 9784274905872 |c Ohmsha |9 978-4-274-90587-2 | ||
020 | |a 1417511397 |c electronic bk. |9 1-4175-1139-7 | ||
020 | |a 9781417511396 |c electronic bk. |9 978-1-4175-1139-6 | ||
020 | |a 1601294018 |9 1-60129-401-8 | ||
020 | |a 9781601294012 |9 978-1-60129-401-2 | ||
035 | |a (OCoLC)70720234 | ||
035 | |a (DE-599)BVBBV042968845 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.3/1 |2 22 | |
110 | 2 | |a NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium> |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advances in learning theory |b methods, models, and applications |c edited by Johan Suykens ... [et al.] |
264 | 1 | |a Amsterdam |b IOS Press |c c2003 | |
300 | |a 1 Online-Ressource (xxi, 415 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO science series |v v. 190 | |
500 | |a "Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice, 8-19 July 2002, Leuven, Belgium"--T.p. verso. - "Published in cooperation with NATO Scientific Affairs Division.". - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references and indexes | ||
500 | |a Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions | ||
500 | |a This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics | ||
650 | 4 | |a Computational learning theory | |
650 | 4 | |a Machine learning / Mathematical models | |
650 | 4 | |a Apprentissage informatique, Théorie de l' / Congrès | |
650 | 4 | |a Apprentissage automatique / Modèles mathématiques / Congrès | |
650 | 7 | |a COMPUTERS / Enterprise Applications / Business Intelligence Tools |2 bisacsh | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 7 | |a Computational learning theory |2 fast | |
650 | 7 | |a Machine learning / Mathematical models |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Computational learning theory |v Congresses | |
650 | 4 | |a Machine learning |x Mathematical models |v Congresses | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Suykens, Johan A. K. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=110129 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA |a ZDB-4-EBU | ||
940 | 1 | |q FAW_PDA_EBA | |
940 | 1 | |q FLA_PDA_EBU | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028394711 |
Datensatz im Suchindex
_version_ | 1804175297376944128 |
---|---|
any_adam_object | |
author_corporate | NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium> |
author_corporate_role | aut |
author_facet | NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium> |
author_sort | NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium> |
building | Verbundindex |
bvnumber | BV042968845 |
collection | ZDB-4-EBA ZDB-4-EBU |
ctrlnum | (OCoLC)70720234 (DE-599)BVBBV042968845 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03512nmm a2200613zcb4500</leader><controlfield tag="001">BV042968845</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151030s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1586033417</subfield><subfield code="9">1-58603-341-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781586033415</subfield><subfield code="9">978-1-58603-341-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">427490587X</subfield><subfield code="c">Ohmsha</subfield><subfield code="9">4-274-90587-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784274905872</subfield><subfield code="c">Ohmsha</subfield><subfield code="9">978-4-274-90587-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1417511397</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4175-1139-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781417511396</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4175-1139-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1601294018</subfield><subfield code="9">1-60129-401-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781601294012</subfield><subfield code="9">978-1-60129-401-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70720234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042968845</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="110" ind1="2" ind2=" "><subfield code="a">NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium></subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in learning theory</subfield><subfield code="b">methods, models, and applications</subfield><subfield code="c">edited by Johan Suykens ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">IOS Press</subfield><subfield code="c">c2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 415 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO science series</subfield><subfield code="v">v. 190</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice, 8-19 July 2002, Leuven, Belgium"--T.p. verso. - "Published in cooperation with NATO Scientific Affairs Division.". - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational learning theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage informatique, Théorie de l' / Congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique / Modèles mathématiques / Congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Enterprise Applications / Business Intelligence Tools</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational learning theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational learning theory</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="x">Mathematical models</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suykens, Johan A. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=110129</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_EBU</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028394711</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042968845 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:14:03Z |
institution | BVB |
isbn | 1586033417 9781586033415 427490587X 9784274905872 1417511397 9781417511396 1601294018 9781601294012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028394711 |
oclc_num | 70720234 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xxi, 415 p.) |
psigel | ZDB-4-EBA ZDB-4-EBU FAW_PDA_EBA FLA_PDA_EBU |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | IOS Press |
record_format | marc |
series2 | NATO science series |
spelling | NATO Advanced Study Institute on Learning Theory and Practice <2002, Louvain, Belgium> Verfasser aut Advances in learning theory methods, models, and applications edited by Johan Suykens ... [et al.] Amsterdam IOS Press c2003 1 Online-Ressource (xxi, 415 p.) txt rdacontent c rdamedia cr rdacarrier NATO science series v. 190 "Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice, 8-19 July 2002, Leuven, Belgium"--T.p. verso. - "Published in cooperation with NATO Scientific Affairs Division.". - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references and indexes Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics Computational learning theory Machine learning / Mathematical models Apprentissage informatique, Théorie de l' / Congrès Apprentissage automatique / Modèles mathématiques / Congrès COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Computational learning theory fast Machine learning / Mathematical models fast Mathematisches Modell Computational learning theory Congresses Machine learning Mathematical models Congresses (DE-588)1071861417 Konferenzschrift gnd-content Suykens, Johan A. K. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=110129 Aggregator Volltext |
spellingShingle | Advances in learning theory methods, models, and applications Computational learning theory Machine learning / Mathematical models Apprentissage informatique, Théorie de l' / Congrès Apprentissage automatique / Modèles mathématiques / Congrès COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Computational learning theory fast Machine learning / Mathematical models fast Mathematisches Modell Computational learning theory Congresses Machine learning Mathematical models Congresses |
subject_GND | (DE-588)1071861417 |
title | Advances in learning theory methods, models, and applications |
title_auth | Advances in learning theory methods, models, and applications |
title_exact_search | Advances in learning theory methods, models, and applications |
title_full | Advances in learning theory methods, models, and applications edited by Johan Suykens ... [et al.] |
title_fullStr | Advances in learning theory methods, models, and applications edited by Johan Suykens ... [et al.] |
title_full_unstemmed | Advances in learning theory methods, models, and applications edited by Johan Suykens ... [et al.] |
title_short | Advances in learning theory |
title_sort | advances in learning theory methods models and applications |
title_sub | methods, models, and applications |
topic | Computational learning theory Machine learning / Mathematical models Apprentissage informatique, Théorie de l' / Congrès Apprentissage automatique / Modèles mathématiques / Congrès COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Computational learning theory fast Machine learning / Mathematical models fast Mathematisches Modell Computational learning theory Congresses Machine learning Mathematical models Congresses |
topic_facet | Computational learning theory Machine learning / Mathematical models Apprentissage informatique, Théorie de l' / Congrès Apprentissage automatique / Modèles mathématiques / Congrès COMPUTERS / Enterprise Applications / Business Intelligence Tools COMPUTERS / Intelligence (AI) & Semantics Mathematisches Modell Computational learning theory Congresses Machine learning Mathematical models Congresses Konferenzschrift |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=110129 |
work_keys_str_mv | AT natoadvancedstudyinstituteonlearningtheoryandpractice2002louvainbelgium advancesinlearningtheorymethodsmodelsandapplications AT suykensjohanak advancesinlearningtheorymethodsmodelsandapplications |