Advances in kernel methods: support vector learning
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
©1999
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (pages 353-371) and index Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [et al.] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller |
Beschreibung: | 1 Online-Ressource (vii, 376 pages) |
ISBN: | 0585128294 9780585128290 0262194163 9780262194167 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042968249 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151030s1999 |||| o||u| ||||||eng d | ||
020 | |a 0585128294 |9 0-585-12829-4 | ||
020 | |a 9780585128290 |9 978-0-585-12829-0 | ||
020 | |a 0262194163 |9 0-262-19416-3 | ||
020 | |a 9780262194167 |c alk. paper |9 978-0-262-19416-7 | ||
020 | |a 0262194163 |c alk. paper |9 0-262-19416-3 | ||
035 | |a (OCoLC)44957981 | ||
035 | |a (DE-599)BVBBV042968249 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.3/1 |2 21 | |
245 | 1 | 0 | |a Advances in kernel methods |b support vector learning |c edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola |
264 | 1 | |a Cambridge, Mass. |b MIT Press |c ©1999 | |
300 | |a 1 Online-Ressource (vii, 376 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 353-371) and index | ||
500 | |a Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [et al.] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller | ||
650 | 4 | |a Algorithms | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Kernel functions | |
650 | 7 | |a COMPUTERS / Enterprise Applications / Business Intelligence Tools |2 bisacsh | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Kernel functions |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Kunstmatige intelligentie |2 gtt | |
650 | 7 | |a Algoritmen |2 gtt | |
650 | 7 | |a Patroonherkenning |2 gtt | |
650 | 7 | |a Functies (wiskunde) |2 gtt | |
650 | 7 | |a Machine-learning |2 gtt | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Kernel functions | |
650 | 0 | 7 | |a Support-Vektor-Maschine |0 (DE-588)4505517-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Support-Vektor-Maschine |0 (DE-588)4505517-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Schölkopf, Bernhard |e Sonstige |4 oth | |
700 | 1 | |a Burges, Christopher J. C. |e Sonstige |4 oth | |
700 | 1 | |a Smola, Alexander J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA |a ZDB-4-EBU | ||
940 | 1 | |q FAW_PDA_EBA | |
940 | 1 | |q FLA_PDA_EBU | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028394116 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804175296284327936 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV042968249 |
collection | ZDB-4-EBA ZDB-4-EBU |
ctrlnum | (OCoLC)44957981 (DE-599)BVBBV042968249 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04324nmm a2200673zc 4500</leader><controlfield tag="001">BV042968249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151030s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585128294</subfield><subfield code="9">0-585-12829-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585128290</subfield><subfield code="9">978-0-585-12829-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262194163</subfield><subfield code="9">0-262-19416-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262194167</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-262-19416-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262194163</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-262-19416-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44957981</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042968249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in kernel methods</subfield><subfield code="b">support vector learning</subfield><subfield code="c">edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">©1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 376 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 353-371) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [et al.] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Enterprise Applications / Business Intelligence Tools</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kunstmatige intelligentie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algoritmen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Patroonherkenning</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functies (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine-learning</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schölkopf, Bernhard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burges, Christopher J. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smola, Alexander J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_EBU</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028394116</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042968249 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:14:02Z |
institution | BVB |
isbn | 0585128294 9780585128290 0262194163 9780262194167 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028394116 |
oclc_num | 44957981 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 376 pages) |
psigel | ZDB-4-EBA ZDB-4-EBU FAW_PDA_EBA FLA_PDA_EBU |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | MIT Press |
record_format | marc |
spelling | Advances in kernel methods support vector learning edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola Cambridge, Mass. MIT Press ©1999 1 Online-Ressource (vii, 376 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 353-371) and index Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [et al.] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller Algorithms Machine learning Kernel functions COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie gtt Algoritmen gtt Patroonherkenning gtt Functies (wiskunde) gtt Machine-learning gtt Support-Vektor-Maschine (DE-588)4505517-8 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Support-Vektor-Maschine (DE-588)4505517-8 s 2\p DE-604 Schölkopf, Bernhard Sonstige oth Burges, Christopher J. C. Sonstige oth Smola, Alexander J. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Advances in kernel methods support vector learning Algorithms Machine learning Kernel functions COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie gtt Algoritmen gtt Patroonherkenning gtt Functies (wiskunde) gtt Machine-learning gtt Support-Vektor-Maschine (DE-588)4505517-8 gnd |
subject_GND | (DE-588)4505517-8 (DE-588)4143413-4 |
title | Advances in kernel methods support vector learning |
title_auth | Advances in kernel methods support vector learning |
title_exact_search | Advances in kernel methods support vector learning |
title_full | Advances in kernel methods support vector learning edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola |
title_fullStr | Advances in kernel methods support vector learning edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola |
title_full_unstemmed | Advances in kernel methods support vector learning edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola |
title_short | Advances in kernel methods |
title_sort | advances in kernel methods support vector learning |
title_sub | support vector learning |
topic | Algorithms Machine learning Kernel functions COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie gtt Algoritmen gtt Patroonherkenning gtt Functies (wiskunde) gtt Machine-learning gtt Support-Vektor-Maschine (DE-588)4505517-8 gnd |
topic_facet | Algorithms Machine learning Kernel functions COMPUTERS / Enterprise Applications / Business Intelligence Tools COMPUTERS / Intelligence (AI) & Semantics Kunstmatige intelligentie Algoritmen Patroonherkenning Functies (wiskunde) Machine-learning Support-Vektor-Maschine Aufsatzsammlung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421 |
work_keys_str_mv | AT scholkopfbernhard advancesinkernelmethodssupportvectorlearning AT burgeschristopherjc advancesinkernelmethodssupportvectorlearning AT smolaalexanderj advancesinkernelmethodssupportvectorlearning |