Forecasting economic time series using locally stationary processes: a new approach with applications
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Loll, Tina (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Frankfurt am Main Peter Lang 2012
Schriftenreihe:Volkswirtschaftliche Analysen Bd. 19
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Includes bibliographical references
1 Introduction; 2 From stationarity to local stationarity; 2.1 Stationary stochastic processes; 2.1.1 A short introduction to stationarity; 2.1.2 Spectral representation of stationary processes; 2.1.3 Stationary ARMA processes; 2.1.4 Asymptotical properties of the sample partial autocorrelations of a stationary AR(p) process; 2.2 Locally stationary processes; 2.2.1 Evolutionary spectrum; 2.2.2 Definition of local stationarity; 2.2.3 Local covariance estimation; 2.2.4 Local partial autocorrelation; 2.2.5 TVAR; 3 Estimation
3.1 Maximum likelihood estimation with the Kullback-Leibler information divergence3.2 Sieve estimation; 4 Forecasting; 4.1 Prediction in the case of stationarity; 4.2 Approaches to forecast time series using TVAR processes; 4.3 Iterative stages in the selection of a model; 4.4 Simulations; 5 Application; 5.1 Motivation; 5.2 Futures data; 5.2.1 Course of action; 5.2.2 Practical evaluation of TVAR processes on futures series; 5.3 Dow Jones index data; 6 Conclusion; 6.1 Contributions; 6.2 Possible directions for future research; References; Notations and abbreviations; List of tables
List of figuresA Appendix; B GAUSS source code; B.1 Fitting time-varying autoregressive models to non-stationaryprocesses; B.2 Procedures for computing the coefficient functions
Beschreibung:1 Online-Ressource (138 pages :)
ISBN:9783653017069
3653017068
9783631621875

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen